IXPE Untangles Theories Surrounding Historic Supernova Remnant

NASA’s IXPE (Imaging X-ray Polarimetry Explorer) telescope has captured the first polarized X-ray imagery of the supernova remnant SN 1006. Situated some 6,500 light-years from Earth in the Lupus constellation, SN 1006 is all that remains after a titanic explosion, which occurred either when two white dwarfs merged or when a white dwarf pulled too much mass from a companion star.

Scientists surmised that SN 1006’s unique structure is tied to the orientation of its magnetic field, and theorized that supernova blast waves in the northeast and southwest move in the direction aligned with the magnetic field, and more efficiently accelerate high-energy particles. IXPE’s new findings helped validate those theories and demonstrate a connection between the magnetic fields and the remnant’s high-energy particle outflow.

IXPE supernova remnant
This new image of supernova remnant SN 1006 combines data from NASA’s Imaging X-ray Polarimetry Explorer and NASA’s Chandra X-ray Observatory. The red, green, and blue elements reflect low, medium, and high energy X-rays, respectively, as detected by Chandra. The IXPE data, which measure the polarization of the X-ray light, is show in purple in the upper left corner, with the addition of lines representing the outward movement of the remnant’s magnetic field.
X-ray: NASA/CXC/SAO (Chandra); NASA/MSFC/Nanjing Univ./P. Zhou et al. (IXPE); IR: NASA/JPL/CalTech/Spitzer; Image Processing: NASA/CXC/SAO/J.Schmidt
Scroll to Top