DOMinATE a Deployable Optical MembrAne TElescope

Northwestern

CENTER FOR INTERDISCIPLINARY EXPLORATION AND RESEARCH IN ASTROPHYSICS

Mel Ulmer (NU), Vicki Coverstone (UM), Batu Baturalp (TTU), Bruce Buchholz (NU) & Jian Cao (NU)

Bigger is Better

Angular resolution: $\theta = 1.22 \lambda/D$

Spatial resolution is proportional to the angular resolution

Sensitivity is proportional to the collecting area, which is proportional to the radius squared

Time resolution is proportional to the sensitivity

Image from NASA

Bigger is Bigger, Heavier, More Expensive and Takes Longer					
Ariane 5: Falcon 9: Falcon Heavy: SLS:	Payload fairing (m) 4.57 x 16.19 5.2 x 13.1 5.2 x 13.1 ~8.4 x 31	Cost (M\$) ~165-220 ~62 ~90 ~500	HSTJWSTMirror diameter (m): 2.4 6.5 Launch weight (kg): $11,110$ $6,500$ Cost (billion \$): ~ 4.7 ~ 8.8 Development (years): ~ 20 ~ 20		
Image credit: Left: NASA Middle: Landsat 8 Right: ESA - NASA			<image/>		

Advantages of Membrane Mirrors

	Payload Weight (kg
Ariane 5:	6,100 - 20,000
Falcon 9:	4,850 - 23,800
Falcon Heavy:	~26,700 - 63,800
SLS:	~70,000 - 130,000

Image credit: Top and bottom: NASA

Membrane Mirrors

- Limited success at microwave frequencies (Hz)
- For optical a RMS figure error of 10s of nm is required
- RMS figure error ~100s of µm

1) Fold the mirror for launch

- 2) Mechanically deployed the mirror
- 3) Mobile electromagnets apply an external magnetic field
- 4) The MSM layer expands or contracts
- 5) A controlled shape change in the reflecting surface
- 6) The deformation is maintained by the magnetically hard material

Comparison with Current Technology

Piezo-electric and Electrostatic Actuators	MSM + Electromagnets
Actuators are deposited on the backside of the mirror	Non-contact application of an external magnetic field
The number of actuators becomes unfeasibly large	A few electromagnets
Active control, fixed wires and constant power are required	Does not require active control
A deformation can only be generated at the location of an actuator	A deformation can be generated at any position

Generating a Deformation

Generating a Deformation

Shape Memory Alloys (SMAs)

Shape Memory Alloys (SMAs)

(a) Stress-induced martensite transformation by distortion

(b) Plastic deformation by slip

Image from Cladera, A., et. al., 2014, construction and Building Materials, 63, 281

- Low symmetry martensite phase

- High symmetry austenite phase

- Martensite ↔ austenite = cooling ↔ heating

- Austenite: single variant crystal structure

- NiTi martensite: 24 crystal structures

- Martensite takes on the variant structure that allows the maximum strain (Δ L/L) for the given stress

- Strains of 6-8%

The Advantages/Disadvantages of SMAs

Advantages

- No magnetically hard material \rightarrow larger deformations
- A deformation can be erased by local heating
- Membranes are floppy SMAs are not
- Austenite can be shape-set

Disadvantages

- Accuracy to which austenite can be shape-set
- Shape-set austenite cannot be heated beyond ~300°C
- RMS surface roughness of SMAs

Conclusion

Aim

- Foldable membrane mirrors
- Increase satellite apertures
- Increase satellite resolution and sensitivity

Status

- Deformations in four substrates
- Deformations up to 1.5 µm
- Deformation that is stable for 71h

Future Work

- Optimize parameters e.g. thickness of the MSM
- Noise and thermal effects
- Control (deformation & figure)
- Substrates: shape memory alloys

1) Deformation stability: substrate/noise

1) Deformation stability: substrate/noise

2) Not all samples show a response

- 1) Deformation stability: substrate/noise
- 2) Not all samples show a response
- 3) Understand and eliminate thermal effects

- 1) Deformation stability: substrate/noise
- 2) Not all samples show a response
- 3) Understand and eliminate thermal effects
- 4) Optimize
 - Thickness of the MSM
 - Thickness of the magnetically hard material
 - Annealing: Terfenol-D crystal structure and response plane
 - Magnetic field strength

- 1) Deformation stability: substrate/noise
- 2) Not all samples show a response
- 3) Understand and eliminate thermal effects
- 4) Optimize
 - Thickness of the MSM
 - Thickness of the magnetically hard material
 - Annealing: Terfenol-D crystal structure and response plane
 - Magnetic field strength
- 5) Deformation control: switch to electromagnets

- 1) Deformation stability: substrate/noise
- 2) Not all samples show a response
- 3) Understand and eliminate thermal effects
- 4) Optimize
 - Thickness of the MSM
 - Thickness of the magnetically hard material
 - Annealing: Terfenol-D crystal structure and response plane
 - Magnetic field strength
- 5) Deformation control: switch to electromagnets
- 6) How deformations affect each other

- 1) Deformation stability: substrate/noise
- 2) Not all samples show a response
- 3) Understand and eliminate thermal effects
- 4) Optimize
 - Thickness of the MSM
 - Thickness of the magnetically hard material
 - Annealing: Terfenol-D crystal structure and response plane
 - Magnetic field strength
- 5) Deformation control: switch to electromagnets
- 6) How deformations affect each other
- 7) Figure control