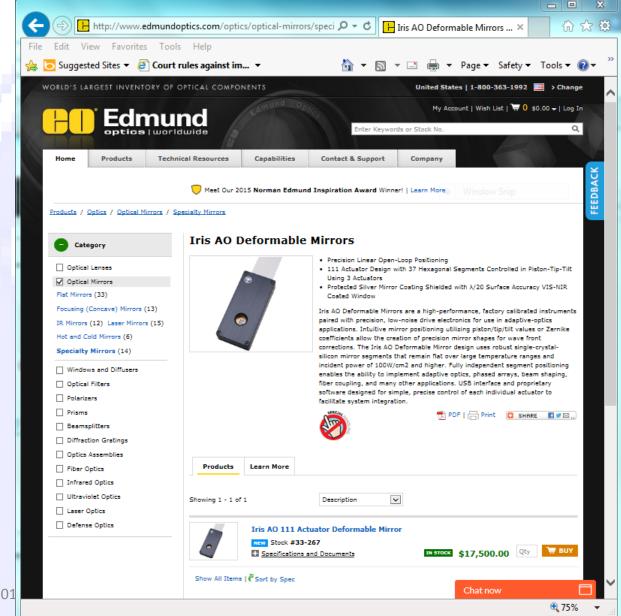
MEMS Deformable Mirror Development for Space-Based Exoplanet Detection Viris AO, Inc.

NASA Phase II SBIR: NNX14CG06C


Michael A. Helmbrecht Iris AO, Inc.

www.irisao.com michael.helmbrecht@irisao.com info@irisao.com

Approved for public release; unlimited distribution

Iris AO PTT111 DMs Sold by Edmund Optics

November 12, 201



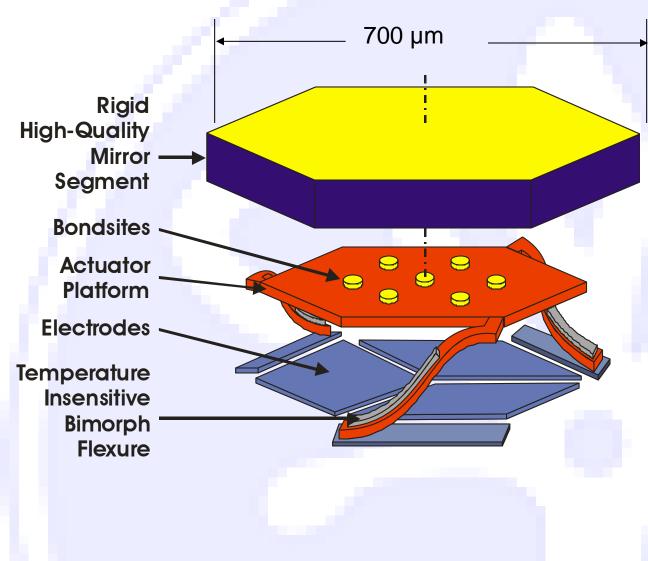
Iris AO Segmented DM Background

November 12, 2015

Mirror Technology Days 2015

^{www.irisao.com} Iris AO, Inc. Iris AO MEMS Segmented Deformable Mirrors

PTT111 DM


- 111 Actuators
- 37 PTT Segments
- 3.5 mm inscribed aperture
- Factory calibrated

PTT489 DM

- 489 Actuators
- 163 PTT Segments
- 7.7 mm inscribed aperture
- Factory calibrated

Iris AO Segmented DM Background

- 3 DOF: Piston/tip/tilt electrostatic actuation – no hysteresis
- Hybrid fabrication process
 - 3-layer polysilicon surface micromachining
 - Single-crystal-silicon assembled mirror
- Unit cell easily tiled to create large arrays
- Hybrid technology
 - Thick mirror segments
 - <1 nm PV/°C segment bow
 - Enables back-side stress-compensation coatings

Phase II SBIR Development NNX14CG06C

Critical Development for Manufacturing DMs for Exoplanet Detection

November 12, 2015

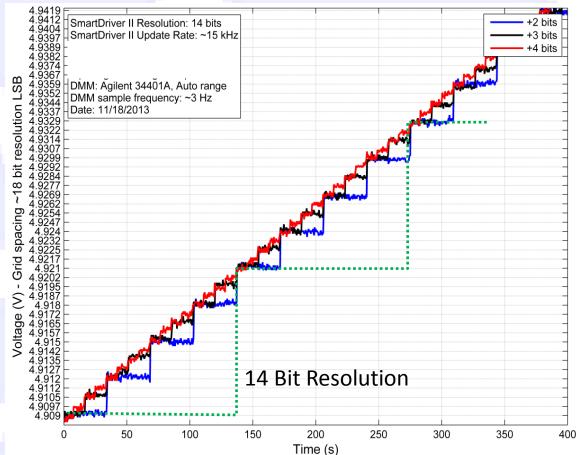
Mirror Technology Days 2015

Electronics Development

 Standard Iris AO drive electronics are 14-bit resolution

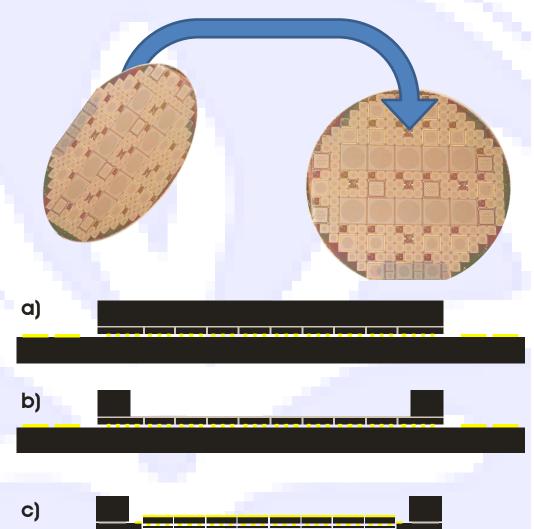
NNX14CG06C Development

- 16-bit resolution HV driver card
 Card built and preliminarily tested
- USB2.0 High-Speed interface
 - Microcontroller
 - FPGA to implement timing critical modulation
 - Windows and Linux compatible
 - ~4 kHz updates under Linux



Super-Resolution Drive Electronics

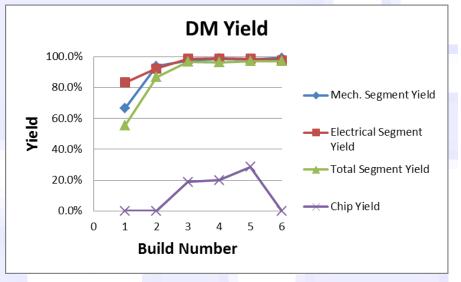
- Standard electronics are 14 bit resolution
- pm *rms* control will require >20 bit resolution
- Grid spacing is for 1 LSB on 18-bit resolution
- Super-resolution demonstration
 - +4 bits were demonstrated
 - Software driven control
- Phase II
 - 16 bit native resolution electronics
 - Modulation schemes implemented in FPGA
 - Expect 20+ bits of resolution
- Testing to be complete Q1 2016

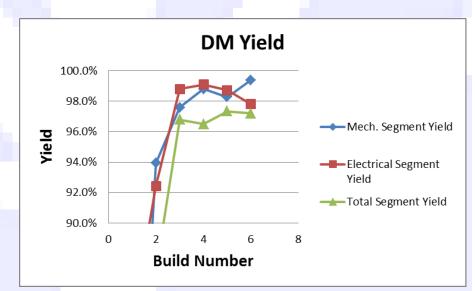

Software-Driven Super-Resolution Results

Scaling Up: Wafer-Scale Assembly

- DMs >1000 actuators require wafer-scaled assembly techniques
- Phase II development for thermocompression bonding underway
 - Process development has lowered bond forces
 - Increased bond-tool tool capacity enables wafer-scale thermocompression
 - Using existing materials/designs Lowest risk path to wafer-scale assembly
 - Alternative materials will be pursued in parallel
- Bonding runs to start December 2015

Yield Enhancement


Results from 2014-2015 Yield Study Mostly IR&D and some NNX12CA42C



DM Yield – 2014 Results

DM		Mirror	Mech.	Electrical	Total	
Build	Actuator	Wafer	Segment	Segment	Segment	Chip
Number	Wafer Lot	Lot	Yield	Yield	Yield	Yield
1	PWA-02	LSM-01	66.8%	83.4%	55.7%	0.0%
2	PWA-02	LSM-02	93.9%	92.4%	86.8%	0.0%
3	PWA-03	LSM-02	97.6%	98.8%	96.8%	18.8%
4	PWA-03	LSM-02	98.8%	99.1%	96.5%	20.0%
5	PWA-03	LSM-02	98.3%	98.7%	97.3%	28.6%
6	PWA-04	LSM-02	99.4%	97.8%	97.2%	0.0%
7	PWA-05	LSM-03	TBD	TBD	TBD	TBD

- Ideally yield increases monotonically with every fabrication lot
- Increased electrical short-circuit failures for PWA-04 actuator lot
 - Defects were more uniformly distributed rather than clustered
 - Result: 0% chip yield
- PWA-04 lot had thicker passivation layers and more aggressive anneal schedule

Fabrication-Process Investigation

- Starting Hypotheses
 - Random event: Poor film quality isolated to the particular fabrication run
 - Systematic event: "Minor" process changes in PWA-04 lot resulted in devastating effects
 - Thicker passivation layers
 - More aggressive anneals

Actuators Wires Substrate

Short-Loop-Test Results

- Short-loop test was run to attempt to test hypotheses
 - Short-loop: subset of the fabrication process
 - Same masks used as PWA-04 lot
 - Wafer splits
 - Same layer thicknesses as PWA-04 lot
 - aggressive anneal schedule
 - reduced anneal schedule
 - Same process as PWA-03 lot
- Results
 - Consistent with prior runs
 - Excessive short circuits spread across wafer
 - PWA-03: Enhanced breakdown at 200 V
 - Process is repeatable!
 - Excessive failures tracked to defects in the photolithography masks
 - Defects track with chip ID/location
 - Anneal schedule had no affect

PWA-05 Actuator Fabrication Run

- New masks to "eliminate" mask defects
- Process splits to show repeatability
 - PWA-03 layer stack
 - PWA-04 layer stack
- Results
 - Reproduced results from PW-03 and PWA-04 wafer lots but with increased yield
 - Even with new masks, 34% of short-circuit failures attributed to mask defects
 - PTT489 chip-yield would be ~2X greater if these defects were eliminated
 - Electrical yield appears to be a function of the design of upper layers unrelated to the wiring and actuators
 - Chip yield could be increased ~3X with projection lithography and the best design!
- Conclusions
 - The actuator-wafer fabrication process is repeatable
 - Future runs should use projection lithography system

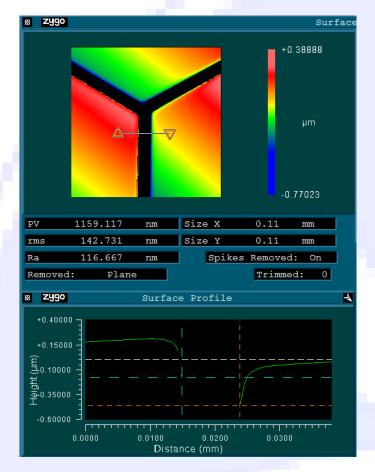
Contact-Lithography Mask Defects

- Defects in masks expose areas of wafer when etching passivation (insulator) layers
- Subsequent wire or electrode layer deposition over defects causes short circuits

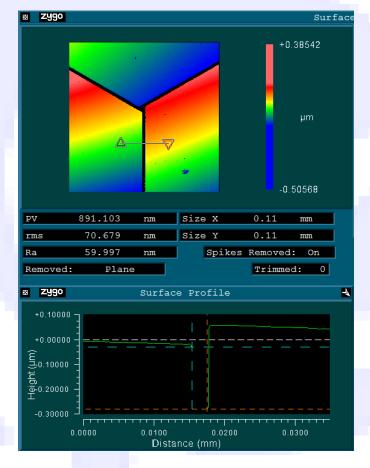
- Projection lithography system with 4:1 reduction
- Masks do not touch the wafer
- Masks are machine inspected to guarantee 0 defects >0.5 μm
 - Smaller than what is resolvable on wafer after reduction

Next Steps

- Continue to mature the DM fabrication and design
 - Improve mirror-assembly yield
 - Build 7 DMs had large yield reduction caused by an issue with mirror-assembly process
 - Implement best practices on next generation DMs
 - Highest-yielding design
 - Projection lithography system



Improved Segment Gaps

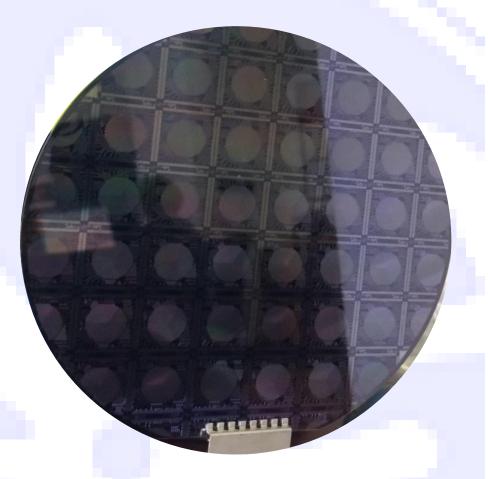

NSF Phase II SBIR IIP-1152710

PT111 Segment-Gap Reduction

2nd Gen. PTT111 DM Mirror Gaps Gap: 9.0 μ m \rightarrow 98.5% Fill Factor Edge Roll Off: 0.4-0.5 μ m Gap + Roll Off \rightarrow 96.7% Fill Factor November 12, 2015

3rd Gen. PTT111 DM Mirror Gaps

Gap: 2.2 μ m \rightarrow 99.6% Fill Factor Edge Roll Off: 0.4-0.5 μ m Gap + Roll Off \rightarrow 99.5% Fill Factor



PTT939 Fabrication Run

Scaling up to ~1k Actuators (PTT939)

- Designs complete for PTT939 DM
- 50% of the masks for actuator wafers are in house
- Short-loop tests validated masks and DUV stepper lithography system
- Full fabrication run to start ~January 2016

PTT939 (Partial) Actuator Arrays on a 6" Wafer

Outlook for 2016

- Environmental testing for PTT489s
 - Shock/vibration, acoustic
 - Test DMs after recent radiation testing
- PTT489 DMs with smaller gaps
- PTT939 fab process completed

Summary

- Developing 20+ bit resolution drive electronics
- Wafer-scale assembly under development
 - Enables scaling to 4th generation 1000 segment (3000 actuator)
 DM
- Major yield improvements
 - Defects on PWA-04 run determined
 - Higher actuator yields demonstrated on PWA-05 run
 - Dramatic chip yield improvement (3X) possible
 - Projection lithography
 - Use best design
- Segment gaps reduced to \sim 2.2 μ m on PTT111 DMs
- Design of 3rd generation 1000 actuator DM completed
 - projection lithography tested by patterning a wafer with actuator wiring layer