Starshade Sub-scale Testing + Model Validation

Anthony Harness Princeton University November 16, 2017 · De

Collaboration

- Princeton
 - Jeremy Kasdin (PI)
 - Yunjong Kim
 - Michael Galvin
- JPL
 - Stuart Shaklan
 - Philip Dumont
 - Bala Balasubramanian + MDL Team
- Work performed under NASA ExEP Technology Development for Exoplanet Missions (TDEM) grant

S-2 Technology

- Starlight Suppression and Model Validation
 - Key technology area in need of development
 - S-2 ExEP Technology Plan (Crill and Siegler, 2017)
- Lack of full-scale starshade test before launch places strong reliance on optical models to:
 - set petal shape tolerance budgets
 - Deployment
 - Mechanical design
 - Materials
 - set formation flying tolerances
 - inform petal design
 - estimate scientific yields

Validation through experimentation

- The starshade will *live and die* by the optical models
- Assumptions in need of validation through sub-scale testing:
 - Scalar Diffraction Theory is sufficient
 - Babinet's Principle (in scalar limit) is applied correctly
- Model validation + sub-scale testing must:
 - Exercise the gremlins
 - Provide confidence in designs and error budgets at an early stage
 - Convince the reasonable critic

Sub-scale testing

•
$$U(p) \propto \frac{-i}{\lambda z} \iint e^{\frac{i\pi r^2}{\lambda z}} r dr d\theta$$

$$\propto \frac{-i}{2} \iint e^{i\pi N} dN d\theta$$

Fresnel Number

$$N = \frac{r^2}{\lambda z}$$

• Physics is identical for consistent Fresnel number

• Under scalar diffraction + Fresnel approximations

	Starshade Radius (r)	Starshade Separation (z)	Wavelength (λ)	Fresnel Number (N)
Sub-scale lab	12 mm	17.5 m*	633 nm	13
Flight	17 m	35,000 km	633 nm	13

*scaled for diverging beam

Princeton Frick Testbed

Laser station

Mask station

Starshade mask

- Silicon mask etched by DRIE process
 - Made by Microdevices Lab at JPL
- r_a: opaque radius
 = 8.4 mm
- r_{0.9}: radius to peak apodization
 = 17.4 mm
- r_{outer}: maximum radius
 = 25 mm
- $N_{0.9} = 27$

Camera station

• EMCCD

- Liquid cooled
- 13 μm pitch pixels
- 1024 x 1024
- EM gain: 100x
- 4 mm aperture

Recent additions

- Eliminated stray light from laser
 - Removed obstructions in front of laser (served as sources of diffraction)
- Using larger pinhole (50 micron) for cleaner wavefront
- Made boxes and tube light-tight
- Removed heat sources (camera, laser) from enclosure
 - Soon to install insulation around tube

Mask 1

*Work by Yunjong Kim

Est. 1.8 μ m underetch

11

Mask 2

*Work by Yunjong Kim

Est. 0.5 μ m overetch

12

 $S_{12.0} = 4.2 \times 10^{-8}$

Petal 1

- Inner Tip SEM 7.94µm (*spec. 7.54µm*)
- Outer Tip SEM 22.56µm (spec. 22.06µm)

Model v Experiment: Suppression

Model v Experiment: Contrast

Residuals

Harness – 11/16/17

Atmospheric turbulence

PRINCETON UNIVERSITY

Reaching 10⁻⁹ Suppression

- Suppression is limited by manufacturing of mask
 - 400 nm uniform over-etch in Silicon etching process
 - Small features are difficult to manufacture on large wafer size
 - Working to eliminate (or pre-bias) over-etch
 - Direct-write process may help
- Next limitation: random defects on mask edge
- Not sure if atmosphere will be limitation at lower levels

Next steps at Frick

- Completing primary milestone:
 - Manufacture mask with \sim 0.1 μm etching error
- See if atmosphere will limit model validation at 10⁻⁹ contrast
- Improve agreement between models and lab data
 - Get better measurements of mask (< 100 nm resolution)
 - Reduce variation from atmosphere
 - Insulate tube
 - Decrease exposure time

Thank You! BACKUP SLIDES Technology Development

Road to TRL 5

- Reach TRL 5 before 2020 Astrophysics Decadal Survey
 - Looking for recommendation for a Starshade Rendezvous with WFIRST
- SSWG recommends ground demo is sufficient.
- Models agree with experiments at $10^{-\Gamma}$ intensity level
 - Γ ≥ 9
- Decompose Fresnel number
 - Validate in large swath of parameter space
- Test at similar **fit**, **form**, **function**
 - Fit: demonstrate we understand scalability
 - Form: looks like a starshade (tips, valleys, etc)
 - Function: works as a system (broadband light)

• r_x : radius to apodization value x

• z_0 : source – starshade distance

- z_1 : starshade telescope distance
- λ : wavelength

 $N_{\chi} = \frac{r_{\chi}^2}{\lambda \, z_{eff}}$

Contrast definition

$$C_{(i,j)} = \frac{b_{(i,j)}}{\max\left\{u\right\}}$$

 $b_{(i,j)}$ value of blocked image at off-axis position (i,j)

 $max \{u\}$ peak value of unblocked image

Suppression definition

Suppression = Total light in aperture *with* starshade Total light in aperture *without* starshade

Shadow parameter:
$$\sigma \equiv rac{a}{r} \left(rac{z_1 + z_0}{z_0}
ight) \qquad \begin{array}{c} \sigma o 1: \ \ ext{good} \\ \sigma o 1: \ \ ext{bad} \end{array}$$

 $A\bar{u}_N$

Discrete suppression: $\,s_i\,$

Average discrete suppression = Suppression: \overline{s}

$$= \frac{1}{N} \sum_{i}^{N} s_{i}$$

$$= \frac{1}{N} \sum_{i}^{N} \frac{b_{i}}{A \frac{1}{N} \sum_{j}^{N} u_{j}}$$

$$= \frac{\sum_{i}^{N} b_{i}}{A \sum_{j}^{N} u_{j}} \equiv S$$

- *a:* opaque radius
- *r:* telescope radius
- *z*₀: source-starshade
- *z*₁: starshade-telescope
- N: # pixels S is calculated over
- A: peak apodization value
- *b*_{*i*}: blocked image pixel value
- *u_i*: unblocked image pixel value

Heat sources removed

Optical Modeling

Model descriptions

- Modeling difficulty due to dynamic range (size and field strength) of starshade architecture
- Build confidence with validation of independent models
 - Show agreement between models with different assumptions
- Two families of models:
 - 2D Fresnel propagation
 - 1D line integrals of edge diffraction

Optical models

- Shared assumptions:
 - scalar diffraction
 - vector properties (e.g., polarization) are ignored
 - wavelength << sizes, distances
 - Kirchoff boundary conditions
 - invoke Babinet's principle
- Solve integral theorem of Helmholtz and Kirchoff with Kirchoff BCs

$$\frac{A_r A_s}{4\pi} \iint_S \frac{e^{ik(r+s)}}{rs} \left[\left(\frac{1}{r} - ik\right) \cos\left(n, r\right) - \left(\frac{1}{s} - ik\right) \cos\left(n, s\right) \right] \, dS$$

Nominal performance

Modeling Wavefront Errors

- Edge algorithm assumes interior field is known
- Decompose phase error into angular spectrum of plane waves $A(\alpha) = \int f(x) e^{-i2\pi\alpha x} dx$

$$U(p) \propto \int U_0(x) e^{\frac{ik}{2z}(x-p)^2} e^{\frac{ik}{2z_0}x^2} \left[e^{i\phi(x)}\right] dx$$

$$\propto e^{\frac{ik}{2z}p^2} \int U_0(x) e^{\frac{ik}{2az}x^2} e^{-\frac{ik}{z}px} \left[\int A(\alpha) e^{i2\pi\alpha x} d\alpha\right] dx$$

$$\propto e^{\frac{ik}{2z}p^2} \left[A * \mathcal{F}\left(U_0 e^{\frac{ik}{2az}x^2}\right)\right]_{\left(\frac{p}{\lambda z}\right)}$$

 α_1

 α_2

 α_3

References

- B. Crill and N. Siegler, "Exoplanet Exploration Program Technology Plan Appendix: 2017," Jet Propulsion Laboratory Publications JPL Document No. D-98883, 2017.
- S. R. W. Group, "Starshade Readiness Working Group Recommendation to Astrophysics Division Director," Jet Propulsion Laboratory Publications JPL Document No. 16-5333, 2016.
- Novicki, M., et al., ExoPAG #14 (2016)
- W. Cash, "Analytic Modeling of Starshades," ApJ 738, p. 76, Sept. 2011.
- E. Cady, "Boundary diffraction wave integrals for diffraction modeling of external occulters," Opt. Express **20**, 15196–15208 (2012).
- A. Harness, S. Shaklan, W. Cash, and P. Dumont, "Advances in edge diffraction algorithms," J. Opt. Soc. Am. A (Submitted, 2017).

