WFIRST-AFTA Coronagraph Instrument

Presented by Richard T. Demers WFIRST Coronagraph DRM Lead

Jet Propulsion Laboratory California Institute of Technology

2015-11-12

© 2015 California Institute of Technology.

WFIRST-AFTA

Wide-Field Infrared Survey Telescope (WFIRST) Astrophysics Focused Telescope Assets (AFTA)

> Wide-Field Instrument

2.4m HST-like telescope

Coronagraph Instrument

WFIRST Definition **Existing Coronagraphs** How a coronagraph works WFIRST capability Challenges – how far beyond SoA? Latest results & future effort

WFIRST coronagraph will develop the technologies for a future exo-Earth mission

WFIRST-Coronagraph Instrument Study

• Coronagraph Instrument (CGI) Design Reference Mission

- 2nd instrument on WFIRST, with possible 2016 Phase A start and 2026 launch
 - Technology demonstration of Exo-planet direct imaging
 - Pre-cursor science for future exo-earth missions
- High contrast imaging using precision wavefront sensing and control

WFIRST-Coronagraph Instrument Study

- JPL–led Technology Development Team
 - Princeton University
 - University of Arizona
 - GSFC
 - Ames Research Center
 - STScl
 - Caltech/IPAC
 - Northrop-Grumman Xinetics

WFIRST-Coronagraph Instrument Study

- Near-term Key Deliverables
 - ✓ SDT final report 01/2015
 - ✓ CATE done in 02/2015
 - ✓ Mass/power/cost consistent with existing flight analogs
 - Mission Concept Review (MCR) 12/2015
 - Technology completion by 12/2016
 - TRL-5 at instrument system level

HST Coronagraphs

- NICMOS NIR
- ACS V band (Fomalhaut disk)
- STIS UV-VIS (still operational)

Inner Working Angles (IWA) inadequate for exoplanet detection

Ground-Based Coronagraphs

- GPI
- SPHERE
- Project 1640

-IR detection only

-Contrast insufficient for faint exoplanet detection (Jupiter, Earth analogs)

Coronagraph Instrument

Coronagraph Science Objectives: Planet Imaging & spectral characterization Dust debris characterization

- Utilizes the 2.4m aperture AFTA* telescope
- Advances the TRL of direct imaging instrumentation
- Uses technology based on the successful High Contrast Imaging Test-bed (HCIT)
- Technology Demonstration Coronagraph does not drive WFIRST mission schedule or cost
- Two coronagraphs alternately operated within a single optical beam-train

(HLC) – planet imaging

②Shaped Pupil Coronagraph (SPC) – planet spectroscopy & disk characterization

* Astrophysics-Focused Telescope Asset

Bandpass	430 - 980 nm	Measured sequentially in 10% and 18% bands	
Inner Working Angle	150 mas	at 550nm, 3λ/D driven by AFTA pupil obscurations	
[radial]	270 mas	at 1µm	
Outer Working	0.5 as	at 550nm, 10λ/D, driven by 48×48 format DM	
[radial]	0.9 as	at 1µm (imaging camera)	
Detection Limit (Contrast)	10 ⁻⁹	Cold Jupiters; deeper contrast unlikely due to pupil shape & extreme stability requirements.	
Spectral Resolution	70	$R = \lambda/\delta\lambda$ (IFS)	
IFS Spatial Sampling 17 mas		3 lenslets per λ/D , better than Nyquist	

Block Diagram of a Lyot Coronagraph

CGI Cycle 6 Design Summary

- 1. Coronagraph is designed for high thermal stability
- 2. All coronagraph core optics in one optical plane on a single bench
- 3. Horizontal latches for robotic instrument servicing
- 4. Passively cooled by 3 radiators (heat pipe for electronics, straps for focal plane arrays and focal plane electronics)

CGI Optical configuration

CGI Mechanical configuration

WFIRST-AFTA DRM Cycle 6

- Triangular composite box beam
 - Primary structure for the CGI instrument
 - Mounts the 3-2-1 latches in a horizontal plane to IC interface
- Main optical bench
 - Sandwich construction with face sheets of K13C2U isotropic
 - Composite for high stiffness and good heat transfer to minimize
 - Attaches kinematically to the triangle
- Electronics platform
 - Kinematic attachment to underside of triangle to minimize heat transfer to rest of instrument
- Thermal shroud
 - Composite sandwich construction for high stiffness, minimum weight
 - Supports radiators

Detailed full-physics simulations to validate coronagraph with WFIRST-AFTA

Initial simulations indicate that the coronagraph is likely to achieve all performance goals with the current, unmodified telescope.

WFIRST-Coronagraph Challenges

- 1. Higher contrast in the presence of disturbances
 - Thermal drift
 - Vibration induced jitter
- 2. Accurate correction for wavefront error
 - DM calibration must be at picometer level
- 3. Detector degradation due to radiation
 - Charge traps distort the point spread function (PSF)

WFIRST-AFTA Coronagraph Key and Controlled Milestones

M	1S #	Milestone	Date		
	2 1	First-generation reflective Shaped Pupil apodizing mask has been fabricated with black silicon specular reflectivity of less than 10^{-4} and 20 μ m pixel size.			
	2	Shaped Pupil Coronagraph in the High Contrast Imaging Testbed demonstrates 10^{-8} raw contrast with narrowband light at 550 nm in a static environment.	9/30/14		
	3	First-generation PIAACMC focal plane phase mask with at least 12 concentric rings has been fabricated and characterized; results are consistent with model predictions of 10^{-8} raw contrast with 10% broadband light centered at 550 nm.	12/15/14		
-715	4⊘	Hybrid Lyot Coronagraph in the High Contrast Imaging Testbed demonstrates 10^{-8} raw contrast with narrowband light at 550 nm in a static environment.	2/28/15		
	5⊘	Occulting Mask Coronagraph in the High Contrast Imaging Testbed demonstrates 10 ⁻⁸ raw contrast with 10% broadband light centered at 550 nm in a static environment.	9/15/15		
	6	Low Order Wavefront Sensing and Control subsystem provides pointing jitter sensing better than 0.4 mas and meets pointing and low order wavefront drift control requirements.	9/30/15		
	7	Spectrograph detector and read-out electronics are demonstrated to have dark current less than 0.001 e/pix/s and read noise less than 1 e/pix/frame.	8/25/16		
	8	PIAACMC coronagraph in the High Contrast Imaging Testbed demonstrates 10 ⁻⁸ raw contrast with 10% broadband light centered at 550 nm in a static environment; contrast sensitivity to pointing and focus is characterized.	9/30/16		
	9	Occulting Mask Coronagraph in the High Contrast Imaging Testbed demonstrates 10 ⁻⁸ raw contrast with 10% broadband light centered at 550 nm in a simulated dynamic environment.	9/30/16		

WFIRST Coronagraph 2015 Accomplishments: Milestone #3

- PIAA-CMC (Phase Induced Amplitude Apodization Complex Mask Coronagraph) mask fabricated and characterized at JPL's Micro Devices Lab
- Technical Assessment Committee (TAC) reviewed PIAA-CMC mask result on 12/15/2014. TAC unanimously passed technology Milestone #3!

MDL E-beam facility at

PIAACMC mask image with a laser confocal microscope

PIAACMC mask image with an atomic force microscope

WFIRST Coronagraph 2015 Accomplishment: Milestone #4

- HLC occulter mask made with E-beam lithography at Micro Devices Laboratory at JPL
- AR-coated fused silica substrate, Ni dots, profiled dielectric (PMGI -- Polymethylglutarimide)
- Milestone #4 (HLC narrowband exceeded 10⁻⁸ contrast -5 requirement) passed TAC (Technical Assessment Committee) review on 3/13/2015!

HLC occulter optical microscope image

× 20.000 µm/div z 1000.000 m/div

> Atomic force microscope image

WFIRST Coronagraph 2015 Accomplishment: Milestone #5

- Primary coronagraph architecture (Occulting Mask Coronagraph – OMC) consists of two designs:
 - HLC (Hybrid Lyot Coronagraph)
 - SPC (Shaped Pupil Coronagraph)
- Demonstrated broadband (10% at 550nm) high contrast (<10⁻⁸ requirement) for both designs
- Milestone #5 passed TAC (Technical Assessment Committee) review on 9/29/2015

SPC: 10% bandwidth 550nm Contrast: 7.98e-09

HLC: 10% bandwidth 550nm Contrast: 8.54e-09

High contrast broadband demonstration with AFTA pupil!

WFIRST Coronagraph 2015 **Accomplishment:** Milestone #6

OAP4

FSM

- Low-Order Wavefront Sensing and Control (LOWFSC) - a key enabling technology for coronagraph working with as-built telescope
- Based on Zernike phase contrast microscope
 - Uses rejected starlight to measure observatory pointing jitter and telescope thermal drift
 - Close loop with a fast-steering mirror (pointing) and a deformable mirror (telescope thermal drift)
- Milestone #6 passed TAC (Technical Assessment Committee) review on 9/29/2015
 - Low order wavefront error sensing
 - Closed loop tip/tilt correction

Closed loop residual LoS error ~0.3 mas rms per axis (good case), ~0.5 mas rms per axis (worst case)

Technology Advancement Plans

Hybrid Lyot & Shaped Pupil Coronagraphs

- Model validation tests
- Radiation tests of the focal plane mask
- Commission the dynamic test-bed

DM – Recent Progress

PbMgNbO Unit Cell

Northrop Grumman Xinetics electrostrictive Deformable Mirrors used in HCIT since 2003 (10⁻⁹ raw contrast demonstrated)

Recent progress

- 48×48 Interconnect design demonstrated multiple times for test-bed (vapor phase solder flow)
- New process for Photolithographic deposition of metal pads demonstrated

Packaged 48×48 DM, Xinetics

A Centro-symmetric structure Magnesium (2' ion) Magnesium (2' io

Align & Solder Attach of PGA to DM module

NORTHROP GRUMMAN

Photolithographic deposition of interconnect metal pads

DM – Recent Progress

Most recent DM face-sheet is well within optical requirements

Quantity	Required	Actual
RMS surface	10 nm	3.8 nm
PV surface	100 nm	42 nm
Integrated PSD (0.1 to 5.0 cycles/cm)	3.9 nm	3.3 nm

DM – Advancement

Vacuum surface gauge for DM characterization

Vacuum Surface Gauge (above) in development to characterize DM actuator stroke accuracy and stability to ~30 picometers

Flight Interconnect Design Study (Xinetics) has identified many design concepts

- Column Grid Array
- Pin Grid Array
- Indium bump bonds
- Fuzz Buttons

Column Grid Array based interconnect

Detector – Recent Progress

e2v CCD201-20 Electron Multiplying CCD (1K×1K format)

- E2v CCD201-20 was characterized in the WFIRST Detector lab (JPL) using a NüVü EM N2 camera
- CCD201-20 meets the WFIRST beginning of life (BOL) performance requirements

WFIRST Detector Performance Requirements

Specification	Goal	Requirement	Measurement	Unit
Effective read noise w/gain	0.2	0.2	<0.2	e
Dark current	1×10 ⁻⁴	5×10 ⁻⁴	1.01×10 ⁻⁴ *	e ⁻ /pix/sec
Clock induced charge (CIC) @ 5.5o threshold	0.0010	0.0018	0.0017	e ⁻ /pix/fr

Phase I: Single Displacement Damage Dose

Irradiation at Paul Scherrer Institute Beamline facility in Switzerland in April 2015

- ✓ Testing completed
- Analysis completed (final report was released in May 2015)
- Survivability test of detector for 2.5 x 10⁹
 protons cm⁻² dose 6 years at L2 orbit
 - Assumes 10 mm Ta shield
- Irradiated at room temperature
- Assessed degradation of:
 - RN, EM gain, CIC, dark current, CTE

RN = Read noise CIC = clock induced charge CTE = charge transfer efficiency EM = electron multiplication

- * <u>Detector performs well after L2 equivalent</u> <u>radiation</u>
- * Negligible change in CIC
- * Post-irradiation Dark Current meets AFTA-C requirement
- ★ Effect of degraded CTE is being assessed → will be integrated into WFIRST-C detector model

- Devices irradiated with aluminum shielding
- Different pattern for device 1 and 2
 -- used as control regions for pre-/post-analysis

Device 1: Parallel irradiation only.

Device 2: Serial and Parallel irradiation

Phase II: Cryo Displacement Damage Doses

Irradiation at Harwell Helios 3 Beamline facility in the UK in June 2015

- ✓ Testing completed
- Data analysis ongoing
- Detector maintained at T = -108 C throughout entire campaign
- Cumulative multi-dose:
 - 1 x, 2.5 x, 5.0 x, 7.5 x 10⁹ protons cm⁻²
 - Assumes <3mm Ta shield or <15mm Al
- EMCCD powered on to measure flatband voltage shifts during irradiation
- Assessed degradation of:
 - RN, EM gain, CIC, dark, CTE
 - Full characterization carried out in between each dose

RN = Read noise CIC = clock induced charge CTE = charge transfer efficiency EM = electron multiplication

Experimental setup mounted to the beamline

EPER First Deferred Pixel Results

• First Trailing Pixel CTI values show same trend of increasing CTI with Fluence.

Summary

- 1. Technology development phase has made considerable progress & will be completed in 2016
- 2. WFIRST Coronagraph DRM is advancing without driving mission complexity
- 3. Mass/power/cost consistent with existing flight analogs
- 4. Mission Concept Review in December 2015
- 5. Planning for a Phase A start in calendar 2016

Funded by NASA Science Mission Directorate (SMD) and Space Technology Mission Directorate (STMD).

Jet Propulsion Laboratory

California Institute of Technology

jpl.nasa.gov

Phase I: Single Displacement Damage Dose

- Devices irradiated with aluminum shielding
- Different pattern for device 1 and 2 -- used as control regions for pre-/post-analysis

Device 1: Parallel irradiation only.

Detector performs well after L2 equivalent • radiation

- **Negligible change in CIC** **
- Post-irradiation Dark Current meets AFTA-C ••• requirement
- Effect of degraded CTE is being assessed \rightarrow will be * integrated into WFIRST-C detector model

Detector – Radiation Damage

e2v CCD201-20 Electron Multiplying CCD (1K×1K format)

90 x 50 pixel sub-region

P: phosphorus dopant atoms

V: vacancy diffusion

Dark Hole Contrast – Recent Progress

Hybrid Lyot Coronagraph

- Average contrast 8.5 x 10⁻⁹
- Bandwidth 10% centered at 550nm
- Working angle: 3 9 λ/D
- DM stroke length greatly reduced to 170nm PV

NASA

Shaped Pupil Coronagraph

- Average contrast 8.0 x 10⁻⁹
- Bandwidth 10% centered at 550nm
- Working angle: 2.8 8.8 λ /D
- 2-sided dark hole, 65° bow-tie

Contrast: 8.0x10⁻⁹

