Broadband Reflective Coating Process for Large FUVOIR Mirrors

NASA SBIR Phase II contract No. NNX14CG39P Technical Monitor: Dr. Manuel Quijada (JPL)

David A. Sheikh ZeCoat Corporation 11/20/2014

FUVOIR Coating Performance Objectives

Table 1- Performance Objectives

Metric	SBIR Goal			
Reflectance (90-nm to 110-nm)	>60%			
Reflectance (110-nm to 200-nm)	> 85%			
Reflectance (200-nm – 2500-nm)	> 90%			
Surface Roughness	<5 A RMS			
Coating Stress	< 85 MPa			
Humidity	95% RH, 50 C, 24 hour			
Moderate Abrasion	20 rub, 5 psi, cheese cloth			
Thermal Cycling	-80 + 50 C (ten cycles)			
Adhesion	ASTM Tape Test			

How can ZeCoat help with the problem of developing and applying a FUVOIR coating for large mirrors?

- Step 1 Review what's been done in the literature
- Step 2 Devise a set of reasonable processes for applying a coating to large mirrors and protecting the coating during ground storage and in space
- Step 3 Create a laboratory with the proper tools to deposit, measure, and test such a coating
- Step 4 Demonstrate the proposed Phase I SBIR innovations are feasible and go to Phase II

[1] M.A. Quijada, S. Rice, and E. Mentzell, "Enhanced MgF₂ and LiF Over-coated Al Mirrors for FUV Space Astronomy", *Proc. SPIE* Vol. 8450 (2012)

[2] O.R. Wood II, H.G. Craighead, J.E. Sweeney, and P.J. Maloney, "Vacuum ultraviolet loss in magnesium fluoride films", *Applied Optics* Vol. 23, No. 20 (1984)

[3] R.P. Madden, L.R. Canfield, and G. Hass, "On the Vacuum-Ultraviolet Reflectance of Evaporated Aluminum before and during Oxidation", *Journal of the Optical Society of America* Vol. 53 No. 5 (1963)

[4] H.W. Moos, S.R. McCandliss, and Jeffrey W. Kruk, "FUSE: Lessons Learned for Future FUV Missions", *Proc. SPIE* Vol. 5488 (2004)

[5] A. Karim, "Thin Film Heater for Removable Volatile Protecting Coatings", *The Scientific World Journal* Vol. **2013 Art. 928062** (2013)

[6] J. F. Osantowski, R.A.M. Keski-Kuha, H. Herzig, A.R. Toft, J.S. Gum and C.M. Fleetwood, "Optical Coating Technology for the EUV", Adv.SpaceRes. Vol. 11 No. ii (1991)

[7] D. Ristau, S. Gunster, S. Bosch, A. Duparre, E. Masetti, J. Ferre-Borrull, G. Kiriakidis, F. Peiro, E. Quesnel, and A. Tikhonravov, "Ultraviolet optical and microstructural properties of MgF₂ and LaF₃ coatings deposited by ion-beam sputtering and boat and electron-beam evaporation", *Applied Optics* Vol. 41, No. 16 (2002)

[8] R.A.M. Keski-Kuha, J.I. Larruquert, J.S. Gum, and C.M. Fleetwood, "Optical Coatings and Materials for Ultraviolet Space Applications", *Astronomical Society of the Pacific* Vol. 164 (1999)

[9] T.M. Bloomstein, V. Liberman, M. Rothschild, D.E. Hardy, and R.B. Goodman, "Optical Materials and Coatings at 157 nm" *SPIE* Vol. 3676 (1999)

 [10] M. Postman, T. Brown, K. Sembach, M. Giavalisco, W. Traub, K. Staplefeldt, D. Calzetti, W. Oegerle, R.
M. Rich, H. P. Stahl, J. Tumlinson, M. Mountain, R. Soummer, T. Hyde, "Science drivers and requirements for an Advanced Technology large Aperture Space Telescopte (ATLASAT): Implications for technology development and synergies with other future facilities", *SPIE Meeting Paper* (June 2010)

[11] M.R. Adriaens and B. Feuebacher, "Improved LiF and MgF2 Overcoated Aluminum Mirrors for Vacuum Ultraviolet Astronomy", *Applied Optics* Vol. 10, No. 4 (1971)

[12] J.I. Larruquert and R.A.M. Keski-Kuha, "Removal of a protective coating on AI by ion etching for high reflectance in the far ultraviolet", *Applied Optics* Vol. 47, No. 29 (2008)

[13] S.R. McCandliss, P.D. Feldman, J.B. McPhate, E.B. Burgh, C. Pankratz, and R. Pelton, "Current and Planned FUV Technology Development at the Johns Hopkins University", *Astronomical Society of the Pacific* **Vol. 164** (1999)

"There is nothing new except what has been forgotten"

-Marie Antoinette

Oxidation of aluminum film in 5x10^-7 torr vacuum

R.P. Madden, L.R. Canfield, and G. Hass, "On the Vacuum-Ultraviolet Reflectance of Evaporated Aluminum before and during Oxidation", *Journal of the Optical Society of America* **Vol. 53 No. 5** (1963)

FUSE: Lessons learned for future FUV missions

- FUSE: SiC coatings 905 A 1,105 A, Al:LiF 987 A 1,187 A.
- LiF-coated mirrors were exposed to 30%- 50% RH for less than 5-days during ground storage yet the mirrors degraded prior to launch from 70% reflectance to 55% reflectance
- Time required to degrade un-oxidized bare aluminum in the vacuum of space
 - A 3 months to 2 years in low earth orbit (to drop to 35%, which is approximately the reflectance of SiC)
 - 20-years or more in higher orbit (L2) (provided outgassing from spacecraft doesn't kill the reflectivity)
- Al/MgF2 reflectance ~15% 90-nm to 100-nm

Summary: Types of Contamination

- Oxygen
 - Contaminates bare aluminum
 - Ground storage
 - In the vacuum of space, spacecraft outgassing, (LEO worse)
- Water
 - Humidity during ground storage
 - Outgassing from spacecraft
- Organic
 - Ground storage
 - Outgassing from spacecraft (UV exposure from sun in space makes this worse)

How can ZeCoat help with the problem of developing and applying a FUVOIR coating for large mirrors?

- Step 1 Review what's been done in the literature
- Step 2 –Devise a set of reasonable processes for applying a coating to large mirrors and protecting the coating during ground storage and in space
- Step 3 Create a laboratory with the proper tools to deposit, measure and test such a coating
- Step 4 Demonstrate the proposed Phase I SBIR innovations are feasible and go to Phase II

What things will we need to coat large mirrors with Manuel's 3-step process?

- A technique to heat a surface to ~250 C and apply a coating, without heating the entire mirror assembly (may not need this step if Sn over-coat idea works)
- A method to apply very thin layers (2-nm) uniformly over large areas
- A way to protect the sensitive fluoride layers from humidity during ground storage (apply Sn and remove in space by heating; 230 C melt temperature)

Use ZeCoat's moving source technology to apply a very thin layer, quickly over a large mirror

Radiant heating during metal-fluoride deposition heats aluminum coating to 250 C before entire mirror assembly gets hot

Tin (Sn) as a protective cover for LiF or Al?

449.5°F (231.9°C)

Tin, Melting point

For bare aluminum in space facing sun $\alpha/\epsilon \sim 0.07/0.03 = 2.33$ Temperature = 217 C

Tin

Chemical Element

Tin is a chemical element with symbol Sn and atomic number 50. It is a main group metal in group 14 of the periodic table. Wikipedia

Symbol: Sn

Electron configuration: Kr 4d10 5s2 5p2

Melting point: 449.5°F (231.9°C)

Atomic number: 50

Electrons per shell: 2, 8, 18, 18, 4

Discovered: 3500 BC

Atomic mass: 118.71 u

How can ZeCoat help with the problem of developing and applying a FUVOIR coating for large mirrors?

- Step 1 Review what's been done in the literature
- Step 2 –Devise a set of reasonable processes for applying a coating to large mirrors and protecting the coating during ground storage and in space
- Step 3 Create a laboratory with the proper tools to deposit, measure, and test such a coating
- Step 4 Demonstrate the proposed Phase I SBIR innovations are feasible and go to Phase II

FUV Deposition and Monitoring Set-Up

Deuterium lamp and PMT

PHOTOMULTIPLIER TUBE R1081

Figure 2: Typical Gain Characteristics

SUPPLY VOLTAGE (V)

Upward view looking at sample holder and quartz crystal monitor

FUV coating set-up with moving substrate holder

Pyrometer (8-14 μ) canister with zinc selenide window

1-2 micron pyrometer can look through glass window into vacuum chamber

Resistive (3) source heat-sink

How can ZeCoat help with the problem of developing and applying a FUVOIR coating for large mirrors?

- Step 1 Review what's been done in the literature
- Step 2 –Devise a set of reasonable processes for applying a coating to large mirrors and protecting the coating during ground storage and in space
- Step 3 Create a laboratory with the proper tools to deposit, measure, and test such a coating
- Step 4 Demonstrate the proposed Phase I SBIR innovations are feasible and go to Phase II

Phase I Challenges

- Demonstrating uniform, 1-nm coating over large area
- Demonstrating complete removal of Sn from Surface
- Measuring temperature of coated aluminum surface
 - Pyrometer very sensitive to stray light in chamber

Transmission (%) vs Wavelength (nm) measured at (4) radial positions

NiCr 1 pass

NiCr 3 passes

Phase I results (coating uniformity over large area using motion control evap. system)

NiCr films with varying thickness

Conversion of transmission data to layer thickness using optical constants n,k

Average thickness (nm)

	(nm)								
	Layers	1	2	3	5	6	8	8	
	3	1.51	3.01	4.25	6.90	8.18	10.38	10.67	
Radial	16	1.80	3.17	4.83	7.43	8.85	11.41	11.56	
Position (cm)	33	1.49	2.80	4.38	6.70	8.17	10.38	10.51	
	49	1.52	2.74	4.22	6.50	7.88	10.16	10.16	

Average thickness per layer (nm)

				(nm)					
	Layers	1	2	3	5	6	8	8	Avg
	3	1.51	1.51	1.42	1.38	1.36	1.30	1.33	1.40
Radial	16	1.80	1.59	1.61	1.49	1.48	1.43	1.45	1.55
Position (cm)	33	1.49	1.40	1.46	1.34	1.36	1.30	1.30	1.38
	49	1.52	1.37	1.41	1.30	1.31	1.27	1.27	1.35
	Avg	1.58	1.46	1.47	1.38	1.38	1.32	1.34	1.42

To be discussed in final report....

- Sn removal experiments (reflectance before and after removal)
- Surface heating experiments (ability to produce crystalline fluorides by heating surface and producing large temperature gradient between the front and back of the mirror)

QUESTIONS?