Optical Demonstrations of a Starshade at Flight Fresnel Number

Yunjong Kim¹, Dan Sirbu², Michael Galvin¹, N. Jeremy Kasdin¹, Robert J. Vanderbei¹

¹Princeton University ²NASA Ames Research Center

Introduction

- A starshade mission is typically tens of meters across with tens of thousands of kilometer separation → Very small Inner Working Angle(IWA)
- IWA given by: $tan \theta = R/z$; Shadow size given by R
- Impossible to make full scale ground test
- Laboratory verification of starshade design is necessary to validate the optical models used to design and predict starshade

Introduction

- Contrast: The ratio of the peak of the stellar point spread function to the halo at the planet location
- Suppression: Normalized shadow intensity at the telescope pupil plane

Laboratory Scaling

• The electric field E_{occ} at a distance *z* past an starshade mask with an apodization function A(r):

$$E_{occ} = \frac{2\pi}{i\lambda z} \int_0^R e^{\frac{\pi i}{\lambda z} (r^2 + \rho^2)} J_0\left(\frac{2\pi r\rho}{\lambda z}\right) A(r) r dr$$

r. radius of starshade

- $\rho :$ radius of shadow
- z: distance between starshade & telescope
- Scaling Objective: Maintaining an identical shadow intensity to that expected in space by maintaining constant Fresnel numbers (R²/λz)
- Scaled version that maintains Fresnel number ($R^2/\lambda z$)

$$E'_{occ} = \frac{2\pi}{i\lambda z'} \int_0^{R'} e^{\frac{\pi i}{\lambda z'} (r'^2 + \rho'^2)} J_0\left(\frac{2\pi r'\rho'}{\lambda z'}\right) A'(r')r'dr'$$
$$\rho' = \frac{\rho}{s}, r' = \frac{r}{s}, A'(r') = A(sr'), z' = z/s^2$$

• The electric field at the shadow plane will be identical between space and scaled dimensions

- *r* ': radius of scaled starshade in lab
- ρ ': radius of scaled shadow in lab
- *z* ': distance between scaled starshade & camera
- s: scaling factor

Objective of New Experiment

- PRINCETON UNIVERSITY
- Upgrade the previous experimental facility that allows testing a scaled starshade at flight like Fresnel numbers
- Total beam path: 77.2 m
- Design a mask to satisfy requirement (suppression < 1e-9, contrast < 1e-11)

Design Parameter

B	PRINCETON
~	UNIVERSITY

Parameter	Space Scale	Lab Scale
Separation Z	55,000 km	50 m
Outer Petal Radius	43.7 m	24.8 mm
Inner Petal Radius	21.9 m	12.4 mm
Inner Opaque	14.9 m	8.4 mm
Petal Length	7 m	3.9 mm
Shadow Diameter	6 m	9.6 mm
Telescope Diameter	2.4 m	3.8 mm
lambda ranga	630 nm	630 nm
lambua range	640 nm	640 nm
Fresnel Number@600 nm	14.5	14.5
Suppression Constraint	10 ⁻¹⁰	10 ⁻¹⁰

Lab Scale Mask

Expected Performance

Error	Feature	Edge	Beam	Pinhole	Mask	Camera
Parameter	Size	Perturbation	Misalignment	Aberration	Tilt	Aberration
Budget	0.5 um	0.1 um	1.0 mm	60 nm	1 deg	60 nm

Testbed Setup

Camera Station

Mask (Manufactured by Station the MDL of the JPL)

Laser Station

Beam Propagation – 520 nm

Out of Band Contrast - 520 nm

Experiment

- Check the alignment status of camera and mask
- Exposure time: 500 sec

Feature	Edge	Beam	Pinhole	Mask	Cam
Size	Pert.	Disp.	Abr.	Tilt	Abr.
0.5 um	0.1 um 1.0 um	0.1 mm	60 nm	1 deg	60 nm

9/19

Out of Band Suppression - 520 nm

Beam Propagation – 638 nm

Camera Station

Mask Station

Laser Station

11/19

Contrast at Designed Aperture - 638 nm

12/19

Ideal Simulation

Designed Aperture (Diameter 3.8 mm)

Contrast Azimuthal Average

- Inner petal region is brighter than as we expected
- Exposure time: 3000 sec
- Error in simulation is the same as for the 520 nm case

Contrast at Large Aperture - 638 nm

Ideal Simulation

Large Aperture (Diameter 13.6 mm)

- Shadow diameter: 9.6 mm
 / EPD: 13.6 mm
 - More light is incident to the camera
 - \rightarrow The contrast is worse than with the smaller designed aperture
 - Mask defects can be seen clearly because of a much larger camera over-resolving image

Suppression – 638 nm

638 nm Single mode fiber w/o pinhole

633 nm Diverging lens + 15 μm pinhole

Contrast Improvement

Contrast – 633 nm

250

17/19

Suppression – 633 nm

- We achieved a first light result for a starshade at flight Fresnel number 14.5 with 10⁻⁹ contrast and 10⁻⁶ suppression at 633 nm
- From the analysis the inner petal region is brighter than design
- Limiting factor of current setup is mask defects, accuracy and stray light
- Images extremely stable on the times scales measured indicating turbulence is not a problem
- The effect of wavefront error and beam drift was negligible
- We are installing EMCCD and checking stray light source
- We hope to get 10⁻⁹ suppression and < 10⁻¹¹ contrast at working bandpass from a new mask

Thank you for your attention!

Appendix

Contrast – 633 nm

Camera Mount Replacement

Microscope Image

Petal Number	Defect	Position from Inner Tip of Petal (Microns)	Distance from line (perpendicular) (Microns)	Size (Height) (Microns)	Size (Width) (Microns)
15	1	9254.1	3875.1	5.84	7.08
15	2	11995	4480.8	13.99	9.69
15	3	13232	6299.4	6.23	6.27

25

New Mask at Previous Testbed

Divergent Beam Scaling

Ideal Simulation

All Error Combined Simulation

Error Parameter	Budget
Feature Accuracy	0.5 µm
Edge Perturbation	0.1 µm
Optics Aberrations	λ/10 ≈ 60 nm
Diagonal Beam Misalignment	1 mm
Mask Tilt	1 °
Camera Aberrations	60 nm

