Design of a starshade at flight Fresnel numbers in the lab

Yunjong Kim¹, Dan Sirbu², Michael Galvin¹, N. Jeremy Kasdin¹, Robert J. Vanderbei¹,

¹Princeton University ²NASA Ames Research Center

Introduction

- A starshade mission is typically tens of meters across with tens of thousands of kilometer separation \rightarrow To match very small Inner Working Angle
- Inner Working Angle given by: $tan \theta = R/z$; Shadow size given by R
- Making full scale ground tests impossible
- Laboratory verification of starshade design is necessary to validate the optical models used to design and predict starshade

Laboratory Scaling

• The electric field Eocc at a distance z past an starshade mask with an apodization function A(r):

$$E_{occ} = \frac{2\pi}{i\lambda z} \int_0^R e^{\frac{\pi i}{\lambda z}(r^2 + \rho^2)} J_0\left(\frac{2\pi r\rho}{\lambda z}\right) A(r) r dr$$

- r. radius of starshade
- $\rho :$ radius of shadow
- z: distance between starshade & telescope
- Scaling Objective: Maintaining an identical shadow intensity to that expected in space by maintaining constant Fresnel numbers (R²/λz)
- Scaled version that maintain Fresnel number ($R^2/\lambda z$)

$$E'_{occ} = \frac{2\pi}{i\lambda z'} \int_0^{R'} e^{\frac{\pi i}{\lambda z'} (r'^2 + \rho'^2)} J_0\left(\frac{2\pi r'\rho'}{\lambda z'}\right) A'(r')r'dr'$$
$$\rho' = \frac{\rho}{s} , r' = \frac{r}{s} , A'(r') = A(sr') , z' = z/s^2$$

• The electric field at the shadow plane will be identical between space and scaled dimensions

- *r* ': radius of scaled starshade in lab
- ρ ': radius of scaled shadow in lab
- *z* ': distance between scaled starshade & camera
- s: scaling factor

Previous Subscale Laboratory Verification

Fresnel Number: 16

Fresnel Number: 150 Northrop Grumman

Fresnel Number: 607

Princeton

Ref. E. Cady et al. 2009,2010 D. Sirbu et al. 2013,2014

Typical Flight Fresnel Number for Space Mission: 15

Ref. R. Samuele et al. 2009, 2010 T. Glassman et al. 2013,2014

Previous Experimental Setup at Princeton

(Made at MDL at JPL)

Ref. E. Cady et al. 2009 D. Sirbu et al. 2014

- Effect of the Fresnel number, that we effectively have a much larger telescope and are over-resolving the starshade.
- The dominant affect causing the bright edges is a manufacturing error

Ref. D. Sirbu 2014 Thesis

Ref. D. Sirbu 2014 Thesis

- Achieved contrast in lab of 10⁻¹¹ and suppression of 10^{-5.1} (Design Contrast:10⁻¹³ Design Suppression -10^{-6.6})
- Limitations of the experiment
 - Manufacturing accuracy
 - Camera noise
- Condition of diffractive analysis

Feature	Edge	Beam	Opt.
Size	Pert.	Disp	Abr
0.55 um	0.05 um	3.7 mm	60 nm

 Mask manufacturing accuracy of better than 0.5 microns

Objective of New Experiment

- Upgrade the previous experimental facility that allows testing a scaled starshade at flight –like Fresnel numbers
- Total beam path: 78 m
- Design a mask to satisfy requirement (suppression < 1e-9, contrast < 1e-11)

Starshade Design Process

Profile

Starshade for lab experiment

Ref. D. Sirbu 2014 Thesis

Starshade Design Process for New Lab

Parameter	Space Scale
Separation	55,000 km
Outer radius	43.7 m
Inner radius	21.9 m
Outer opaque	35.0 m
Inner opaque	14.9 m
Shadow Diameter	6 m
Telescope Diameter	4 m
Smoothness	0.1
lambda range	500 – 850 nm
Fresnel Number@600 nm	14.5
Suppression constraint	10 ⁻¹¹

New Experiment Mask

Starshade Design Process for New Lab

Parameter	Space Scale	
Separation	55,000 km	
Outer radius	43.7 m	
Inner radius	21.9 m	
Outer opaque	35.0 m	
Inner opaque	14.9 m	
Shadow Diameter	6 m	
Telescope Diameter	4 m	
Smoothness	0.1	
lambda range	500 – 850 nm	
Fresnel Number@600 nm	14.5	
Suppression constraint	10 ⁻¹¹	

New Experiment Mask

Starshade Design Process for New Lab

Parameter	Space Scale
Separation	55,000 km
Outer radius	43.7 m
Inner radius	21.9 m
Outer opaque	35.0 m
Inner opaque	14.9 m
Shadow Diameter	6 m
Telescope Diameter	4 m
Smoothness	0.1
lambda range	500 – 850 nm
Fresnel Number@600 nm	14.5
Suppression constraint	10 -11

New Experiment Mask

Divergent Beam Scaling

Lab Scale Parameter

Parameter	Space Scale	Lab Scale
Separation Z	55,000 km	39 m
Outer radius	43.7 m	26 mm
Inner radius	21.9 m	13 mm
Outer opaque	35.0 m	29 mm
Inner opaque	14.9 m	8.8 mm
Shadow diameter	6 m	7.2 mm
Telescope diameter	4 m	3.4 mm
smoothness	0.1	0.1
lambda range	500 – 850 nm	
Fresnel Number @600 nm	14.5	14.5

Ideal Simulation

2D Simulation with Sensitivity Analysis

Error Parameter	Budget	
Feature Accuracy	0.25 µm	
Edge Perturbation	0.5 µm	
Optics Aberrations	λ/10 ≈ 60 nm	
Diagonal Beam Misalignment	2 mm	
Mask Tilt	1 °	

Testbed Design

Stray Light Analysis

- Path 1 : No scattering ; light source \rightarrow pupil plane, directly
- Path 2 : 1^{st} scattering ; light source \rightarrow tube $1(1^{st}$ scat) \rightarrow pupil plane
- Path 3 : 2^{nd} scattering ; light source \rightarrow tube $1(1^{st} scat) \rightarrow$ tube $2(2^{nd} scat) \rightarrow$ 2.5 × 10⁻⁹ pupil plane Mask 2 Pupil _ight Plane Source 1.5 Suppression 0.5 0 2 0 3 5 4 6 Reflectivity, %

Most of the stray light can be blocked when we set 0.8 m diameter

- We designed a starshade for scaled experiment in lab and performed error analysis to check the reliability of the design.
- We are in the process of evaluating the sensitivity to wavefront error in the tube and plan to measure the wavefront directly using a wavefront sensor
- We are modifying baffle design to remove stray light due to reflection of the enclosure.
- We expect the entire installation to be completed with first light by mid-December.

Thank you for your attention!