FUV to NIR Mirror Coatings Development

Bala K. Balasubramanian Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91009

John Hennessy, Shouleh Nikzad, Nasrat Raouf, Michael Ayala Jet Propulsion Laboratory

> Manuel Quijada, Javier Del Hoyo Goddard Space Flight Center

Subcontract support: Zecoat Corp

Mirror Tech Days 2014 Conference, Albuquerque, NM

Nov 20, 2014

© 2014 California Institute of Technology. Government sponsorship acknowledged.

Bala K. Balasubramanian

Jet Propulsion Lab. California Institute of Technology 1

Outline

- 1. Project Goals
- 2. Background
- 3. Equipment & Processes
- 4. Initial Results
- 5. Further Work
- 6. Summary

COR Program Directions

 The NASA Cosmic Origins Program Annual Technology Report (COR Technology Needs, Table 7, Item 8.1.3., page 43, Oct 2011) defined the primary goal:

 "Development of UV coatings with high reflectivity (>90-95%), high uniformity (<1-0.1%), and wide bandpasses (~100 nm to 300-1000 nm)".

• ATLAST and Exoplanet programs emphasize this need, urgency and challenges.

Project Goals

Oxidation of Al mirror surface causes absorption of UV photons thus degrading mirror reflectivity in the UV.

Therefore:

 Identify and develop void-free thin films of absorption-free materials to protect and maintain high reflectivity and durability of aluminum mirrors in laboratory and pre-launch environments.

 Develop precisely controllable and scalable deposition processes to produce such coatings on large telescope mirrors.

Desired Performance goals: R > 90% over 100 to 1000nm

Context

Jet Propulsion Lab. California Institute of Technology 5

Historical Background

Hubble Telescope MgF₂ coated Al mirror >115nm through visible wavelengths

FUSE (Far Ultraviolet Spectroscopic Explorer)

MgF_2 and AIF_3 on AI

 AIF_3/AI coating reflectivity in the DUV [Bridou, et al., (2010)]

 MgF_2/Al coating reflectivity in the DUV [Bridou, et al., (2010)]

Candidate Materials

Several fluorides: CaF₂, LiF, MgF₂, LaF₃, AlF₃, LuF₂, Na₃AlF₆, YbF₃ and GdF₃

- Produced single layer coatings of MgF₂, LiF, AlF₃, LaF₃, Na₃AlF₆ and GdF₃ with conventional thermal evaporation at pressures in the range of 5x10⁻⁷ to 1x10⁻⁶ Torr and temperatures in the range of 180 to 200C.
- Preliminary double layer (LiF+AlF₃) and (LiF+MgF₂) protected Al mirror samples by conventional evaporation process
- Preliminary MgF₂ protected Al mirror samples by ALD process

Coating Chamber

A 1.2 meter coating chamber fitted with process controllers, thickness monitor and gas analyzer. (courtesy: Zecoat Corp)

Chamber Enhancements

Upgrades to the coating chamber fitted with FUV optical monitoring system and sample transport cum masking mechanism to enable multiple coatings without breaking vacuum. (courtesy: Zecoat Corp.)

FUV reflectometer system inside the coating chamber for *in situ* diagnostics of the growing film. (courtesy: Zecoat Corp.)

Single layer coatings

Transmittance spectra of single layer coatings of AIF_3 , MgF_2 , and LiF on uv grade fused silica substrate. The numbers in parenthesis indicate thickness in Angstroms. Angle of incidence: 0 deg.

Transmittance spectra of single layer coatings of GdF_3 , MgF_2 , LaF_3 , and Na_3AIF_6 on uv grade fused silica substrate. The numbers in parenthesis indicate thickness in Angstroms. Angle of incidence: 0 deg.

FUV monitoring

in situ FUV monitor diagnostic signal while growing Al film followed by MgF₂ film

Single layer protected Al mirror coatings

with ~30 to 40% humidity.

Double layer protected Al mirror coatings

Reflectance of Al+LiF mirror samples with MgF_2 and AlF_3 protective layers. Measured after 6 months, these samples show little degradation. These were stored in dry nitrogen flow box except during measurements involving a few days of exposure to normal lab environment with ~30 to 40% humidity.

Double layer protected Al Performance Stability

 $Al+LiF+AlF_3$ mirror sample measured after 6 months and 8 months apart showing little or no degradation. Measurements were made at JPL and at GSFC with two different instruments showing excellent agreement. FUV measurement in addition to UV-VIS included in this chart (08/20/14 trace) was made at GSFC with an Acton spectrometer designed for such measurements in the FUV.

Performance Stability

Witness Sample ID JPL0065 (Si Substrate)

Al+LiF+AlF₃ mirror sample and Al+AlF3 mirror sample measured after 6 months and 8 months apart showing little or no degradation. Measurements were made at GSFC with an Acton spectrometer

Bala K. Balasubramanian

Theoretical models

Al / LiF / AlF3 Mirror: Reflectance

down to 100nm for these calculations

Atomic Layer Deposition (ALD)

ALD coating system at JPL; gas feedthroughs and process controls enable AIF₃ and MgF₂ coatings development

TiO₂ 20 μm AlF₃ 20 μm

Optical interference micrographs of 100 nm TiO_2 deposited by ALD on silicon at 250 °C showing significant grain structure, compared to a 100 nm AIF₃ deposited by ALD at 200 °C imaged under similar conditions.

Bala K. Balasubramanian

ALD thin films of MgF₂ and AlF₃

ALD coatings of MgF₂ on Al

Reflectivity of Al+MgF2 (ALD) films produced at JPL and measured at GSFC in Oct 2014

Summary & Further Work

- MgF₂, AlF₃ and LiF are promising protective coatings in bilayer combinations over Al
- Encouraging performance stability of preliminary protected mirrors as measured in two different labs across the country over 10 months
- Preliminary ALD coatings of MgF₂ and AlF₃ show very smooth surfaces and nearly absorption free (k~0) optical properties
- Further work in plan for both techniques to improve Al mirror reflectance in the 100 to 200nm wavelength range with optimum layer structures
- Detailed environmental tests to follow

Acknowledgements

NASA Cosmic Origins Program SAT funding for the development work at JPL

Co-Investigators: Shouleh Nikzad, JPL John Hennessy, JPL Stuart Shaklan, JPL Nasrat Raouf, JPL Prof. Paul Scowen, Arizona State University Prof. James Green, Univ. of Colorado Dr. Manuel Quijada, GSFC, MD Javier Del Hoyo, GSFC, MD Michael Ayala, Academic part time Student at JPL

Subcontract: David Sheikh, Zecoat Corporation, Torrance, CA

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Background-2

Aluminum is the only material that covers the entire spectral range of interest But Al oxidizes rapidly in normal environment degrading UV reflectivity