

Recent Progress on 2012 SAT for UVOIR Coatings

2014 Mirror Technology/SBIR/STTR Workshop

By

Manuel Quijada

November 20th, 2014

2014 Mirror Technology/SBIR/STTR Workshop

- Project Objectives
- Methods & Facilities
- Results
- Conclusions & Future Plans
- Acknowledgements

Enhanced FUV Coating Applications

- Distant and faint objects are typically searched for in cosmic origin studies:
 - $\circ\,$ Origin of large scale structure
 - \circ The formation, evolution, and age of galaxies
 - $\circ\,$ The origin of stellar and planetary systems
- Astronomical observations in the Far Ultraviolet (FUV) spectral region are some of the more challenging
- Very limited option of reflecting coatings to use at FUV wavelengths:
 - o Modest reflectivity offered by those coatings
 - AI+MgF₂ [typically 82% at Lyman-alpha, 1216 Å) that are used on reflecting surfaces of FUV instrumentation
- Improved reflective coatings for optics at FUV could yield dramatically more sensitive instruments.
- Permit more instrument design freedom

Project Objectives

Develop coating deposition processes to improve performance

of mirrors in Far Ultraviolet (FUV) spectral range

- Three specific tasks:
 - Use a reactive Ion Beam Sputtering process to make low scatter MgF₂ films
 - Research little studied low-absorption materials to produced dielectric coatings in the FUV
 - Improve FUV mirror reflectance of aluminum mirrors over-coated with MgF₂ and LiF
- 3-year performance period (Started in FY12)

GSFC Coating Facilities

PCOS OF

PVD, IBS, and RF Magnetron Sputtering deposition chambers
 Coatings produced: AI, MgF2, LiF, SiO_x, GdF₃, LuF₃, AI₂O₃, Ag, Cr, Y₂O₃

PVD coating chamber (1-meter)

Reactive Ion Beam Sputtering

2-Meter Chamber

Chamber top Cover with mirror substrate installed

Missions supported:

Astronomical Observatory (OAO) & Ultraviolet Explorer (IUE) FUSE, HST (COSTAR, GHRS & COS), and a number of sounder rocket missions

Coating Deposition Processes

PVD

- Material is heated until it reaches vapor form
- Material is deposited on the substrate where it condenses
- Typical deposition rates are 10-100 Å/Sec.

Sputtering

- Non-thermal evaporation process
- Atoms from a target are ejected by momentum transfer from energetic atom-size particles
- · Particles are energized by an ion gun
- Deposition rates are much lower than PVD 1-5 Å/Sec.

- o Zone model of film growth vs. substrate temperature (After Movchan & Denchishin (1969))
- $\circ~$ Three zones as function of Ts/Tm $\,$
 - Zone 1 (< 0.25): Feathery "frost" with columnar growth separated by many voids
 - Zone 2 (0.25 to 0.45): Densely packed columns
 - Zone 3 (> 0.45): Polycrystalline structure

2-meter Chamber Heat Panel Concept

- Design and fabrication of internal heat shields for 2-meter Chamber.
- Optimized coating parameter for high FUV reflectance of a distribution of slides in center and out to a ~0.5 meter radius.
- These wall panels were made out of stainless steel and were designed to easily interface with the existing internal configuration of the chamber.

8 PANELS

ADJUSTABLE LIGHT MOUNT SINGLE VIEWPORT 10" X 10" SQUARE

2-meter Chamber Heater Check Out Process

- Earlier test of heaters showed maximum temperature reached was only 100° C after 5 hours
- Doubled lamp power output from 500 W to 1000 W each (4000 W total)
- Additional testing yielded a maximum temperature of 130 ° C
- Further testing done after wrapping heat shield panels with aluminum foil provide for a much quicker raise in temperature, reaching 220 ° C in less than 1 hour

Thickness Uniformity

Optical Characterization: $T(\lambda)$, $R(\lambda)$

ACTON VUV Spectrometer

- Spectral range: 30-300 nm
- Source: Windowless H2-purged source (H2 emission lines between 90
 nm and 160 nm and a continuum at higher
- Detector: PMT with fluorescence coating

Perkin Elmer Lambda 950

Spectral range: 190-2500 nm Universal Reflectance Accessory

FUV Reflecting Dielectric

- Choose a high-index (H) and low-index (L) pair combination
- Form a pair of (H,L) layers with thicknesses equal to a Quarter-Wave Optical thickness at the design wavelength.
- Repeat the stack above until desired reflectance is achieved.

Note: The larger the difference between (n_H-n_L) the better contrast and fewer layers needed to achieve a given R

L: MgF_2 (n ~ 1.45) H: GdF₃; LuF₃ (n ~ ?)

GdF₃ and LuF₃ Films Characterization

430 A GdF3 film on MgF2 substrate

• 435 A LuF3 film on MgF2 substrate

GdF₃ and LuF₃ Films Optical Constants

FUV Reflector

Wavelength (nm)

Design 1: 5 pairs MgF_2/GdF_3 on Al layer Design 2: 10 pairs MgF_2/GdF_3 on MgF_2 substrate

A/R Coating Application: DMD Windows for UV Astronomy

0.7XGA 12° DDR DMD

- APRA grant (PI: Zoran Ninkov (RIT) to enable use of Digital micro-Mirror Device (DMD) in UV astronomy
- DMD window replacement to allow transmission in the UV spectral range
- A/R coating design on Sapphire: 155.6 A (GdF₃) & 384.6 A (MgF₂)

A/R Coating Performance (Per Surface)

≻ A/R

AI+MgF₂ Mirror FUV Performance

- Predicted vs. measured reflectance of bare Al and Al+MgF₂ reflectance (Al: 50.0 nm; MgF2: 25.0nm)
- Enhanced performance is obtained by heating (~220 ° C) substrate during MgF2 deposition
- Reflectance > 80% at λ > 115.0 nm

Micro-roughness Al+MgF2 Coatings

Standard Deposition

Hot Deposition

AM2 13	x20 mag/		
010	angstrom		
		PV (Å)	Sq (Å)
top left		75.58	6.146
top right		101.2	5.196
center		128	4.021
bottom left		200.1	3.027
bottom right		100	3.282
average		120.97	4.3344

AMCT 13 01A	x20 mag/ angstroms		
		PV (Å)	Sq (Å)
top left		45.31	2.249
top right		40.19	2.331
center		50.96	3.304
bottom left		44.39	2.923
bottom right		50.85	3.854
average		46.34	2.9322

AI+LiF Mirror FUV Performance

Coating recipe: Al (43nm, ambient)+LiF(8nm, ambient)+LiF(16.4nm, 250 $^{\circ}$ C) $R_{ave}(100-150nm)$: 59% (FUSE) 75% (LiF)

AI+LiF Mirror FUV Predicted Performance

Wavelength (nm)

2014 Mirror Technology/SBIR/STTR Workshop

ICON/GOLD Coating Tasks

- ICON (Ionospheric Connection explorer): Study Earth's low-orbit ionosphere sun interactions
- GOLD (Global-scale Observations of the Limb and Disk) : Imager to map Earth's thermosphere & ionosphere

- > A total of 12 optics ranging in size from 26 mm to 264 mm
- Coatings are optimized to produce reflectance over 90% in the 134-156 nm range

Conclusions and Future Plans

- Reported gains in FUV reflectivity of AI+MgF₂ and AI+LiF mirrors by employing a 3-step process during PVD coating deposition of these materials.
- Successful demonstration of enhancement in FUV reflectance using a large 2-meter chamber.
- Characterization of lanthanide tri-fluoride material candidates to determine their FUV transparency for development of dielectric coatings.
- > On-going task of producing AI(50)+LiF(15nm)+MgF₂(5nm).
- Production of FUV reflector and A/R coatings with dielectric (MgF₂/GdF₃) pairs.

Acknowledgement

Collaborators:

Javier del Hoyo, Steve Rice, Felix Threat, Jeffrey Kruk, Charles Bowers

A/R Coating Example

•A/R to suppress FS reflection losses near 1000 nm

•Design includes 2 layer pairs of $GdF_3(H)/MgF_2(L)$ (181 and 200 nm respectively) on both sides

Performance is 0.25% near 1000 nm

Ion Beam Sputtering Coating Chamber

- Upgrade chamber with a two-gas flow controller system.
- Krypton gas to be used in the ion-beam sputtering depositions.
- Freon (CF4) used as reactive gas to replenish the targets (MgF2) stoichiometry.
- Added heaters to the chamber:
 To improve microcrystalline film properties.

Reactive gas intake

Comparison MgF2 Depositions in IBS Chamber

Reactive IBS

Normal IBS

- Characterization of MgF2 films produced with the IBS process were not as good as conventional PVD results. As a result not coating runs of LiF films using reactive IBS were attempted
- > Problem could be traced to at degradation of cathode filament due to reactive fluoride containing gas (Freon) in chamber
- Solution will be to procure an ion gun source without a filament:
 - Cost is over \$100k
 - > Efforts were not pursued due to budget constraints

2014 Mirror Technology/SBIR/STTR Workshop