

Phase I SBIR - Battery-Powered Process for Coating Telescope Mirrors in Space

Technical Monitor: Dr. K. Balasubramanian (Bala) JPL Principle Investigator: David A. Sheikh ZeCoat Corporation Torrance, California 11/15/17

Battery-powered deposition unit for ground-based coating

Why Coat Mirrors in Space?

"...if the space-based coating technology was mastered the reward would be an increase in throughput for a 3reflection optical system by an order of magnitude" – <u>FUSE Lessons Learned</u>, 2004.

- protected over-coats of fluorides such as MgF2 or LiF, absorb the energy below 120-nm

- without the protective fluoride, aluminum forms a natural oxide when in the atmosphere, which absorbs energy below ~180-nm.

 a bare aluminum coating made in space, could reflect energy down to 35-nm (currently, the spec for LUVOIR is 90-nm minimum)

Why coat a mirror in space?

4

Battery-powered filament evaporator, or "battery-powered deposition (BPD)"

Telescope designed for coating in space

Keys to demonstrating the feasibility of coating in space

- Ability to generate high coating rates over large areas
 - Target is 100 to 400 A/sec
- Ability to control coating thickness errors
 - Target is +/- 1 nm RMS → ~4-nm PTV → +/- 5% for a 40-nm film
- Dealing with thermal issues
 - Temperature of the substrate during coating in space
 - Thermal-cycling of the batteries and warming them before use
- Design of the telescope and deployment of coating array

Reflectance as a function of deposition rate

Evaporation rate	200-nm (reflectance %)	400-nm (reflectance %)		
40 (A/sec)	82.7	91		
65 (A/sec)	87.6	91.5		
125 (A/sec)	90.2	91.8		

* Aluminum deposited at a background pressure of ~1x10^-6 torr

Reflectance results comparison

Note: ZeCoat 2017 results @ 80 A/sec Al over-coated with AIF

Evaportion rate vs. Time

Current vs. Time

Battery-powered deposition

- Low voltage, high current (e.g, 7-volts and 200 amps, per source, 1400 watts)
- Many combined sources provide high evaporation rates (400+A/sec), higher UV reflectance, and less UV scatter
- Placing the power supply in close proximity to the evaporation filament means electrical losses are minimized

Coating thickness variation; experimental procedure:

The coating thickness distribution for a single battery powered source was mapped using a stylus profilometer and with optical density.

(3) different plumes were created using masks

A computer simulation was developed to determine the optimum source spacing for a hexagonal array of (31) sources

Plume Type 1 – Unmasked, 150 A/sec

Plume Type 2 – Large hold mask, 130 A/sec

Plume Type 3 – Small hole mask, 110A/sec

Plume Modeling Results Summary

	Single Plume	Combined Plumes	Plume spacing	~ # plumes	coverage efficiency	PTV coating error	PTV (nm)	~RMS error for 40-nm coating
	Rate (A/sec)	Rate (A/sec)	(cm)	per m^2	(%)	(%)	(nm)	(nm)
unmasked (2015)	41	133	23	62	48	6.4	2.56	0.6
unmasked	150	523	55	10	53	10	4	0.9
large hole mask	<mark>130</mark>	566	<mark>40</mark>	<mark>15</mark>	<mark>64</mark>	4	<mark>1.6</mark>	<mark>0.4</mark>
small hole mask	110	317	35	20	64	- 10	4	0.9

Phase II Plan – Get as close as possible to TRL6 by the end of Phase II

- Miniaturize battery-powered deposition unit
- Create custom space-qualified electronics to power the filament
 - Prototype circuit design completed with ZeCoat IRAD in 2017
- Test the BPD coating process with (31) sources in a simulated space environment using a 1.5-m LN2 cryogenic shroud inserted into a 2.3-m coating chamber

Questions?