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• UV Optical IR telescope optics covering FUV to NIR

• High Reflectance including the far UV down to 90nm

• Large area, meter class optics

• High Uniformity

• Low Polarization

• Stability in the environment, robust protection
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Reflectance of 200nm thick film on glass for four metals

Theoretical calculations based on optical constants from Palik
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Aluminum is the obvious choice
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Performance impact due to:

1. Chemical (contamination, oxidation, stoichiometry)
Absorption
Instability/durability

2. Microstructural
Scattering
Water vapor adsorption

3. Uniformity over large area

4. Polarization sensitivity
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Unprotected Al

Unprotected Al 
with ~ 2 nm of 
oxide
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On the Vacuum-Ultraviolet Reflectance of Evaporated Aluminum before and 
during Oxidation*
R. P. MADDEN, L. R. CANFIELD, AND G. HASS; JOSA Vol:53 No:5, May 1963
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California Institute of TechnologyUnprotected Aluminum 

• Reduction of aluminum reflectance following air exposure has power law 
dependence on time
– Power law exponent also has at least exponential dependence on wavelength

Oxidation induced reflectance reduction in the near UV of an Al mirror sample; 
Models predictions match a progressive increase of oxide formation. 

11/02/2016 Balasubramanian, JPL/Caltech 7



Jet Propulsion Laboratory
California Institute of TechnologyProtective layers

Properties of Typical Deposited Thin Films for UV Optical Applications

Material Band Energy (eV) ~λ Cut Off (nm)

lithium fluoride (LiF) 12 – 13 95

aluminum fluoride (AlF3) 11 – 12 105

magnesium fluoride 

(MgF2)

10 – 11 115

calcium fluoride (CaF2) 9 – 10 125

lanthanum fluoride (LaF3) 8 – 9 140

silicon oxide (SiO2) 7 – 8 160

aluminum oxide (Al2O3) 6 – 7 190

• Aluminum has the highest reflectance in the ultraviolet, but reflectance below 
200 nm is strongly suppressed by the presence of any surface oxide

• Protective coatings can be applied to pristine Al surfaces to prevent oxidation and 
even enhance reflectivity due to interference effects

• Currently developing and optimizing ALD processes at JPL for the three best 
candidate protective materials

11/02/2016 Balasubramanian, JPL/Caltech 8



Jet Propulsion Laboratory
California Institute of TechnologyBackground

• Standard coatings fall well below the natural reflectance of aluminum

– A thin, dense, absorption free protective coating could greatly improve 
performance from 90-120 nm

• FUV has a significant number of spectral lines that are of great interest to astronomers

– Stellar and galaxy evolution; protoplanetary disks and exoplanet atmospheres
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Ref: 
Keski-Kuha et al., 
ASP Conference 
Series, vol. 164, 
(1999)
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Conventional Deposition
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Measured reflectance of a bi-layer protected Al mirror sample measured 6, 8, 10 and 
14 months after fabrication showing excellent stability. FUV to NIR spectral range.

Conventional Thermal Evaporation
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Measured reflectance of a tri-layer Al mirror sample measured 6, 8, 10, 14 and 23 months after 
fabrication showing excellent stability. Expanded view of the FUV spectral range.

Conventional Thermal Evaporation
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– ALD AlF3 coatings have a measured long-term stability, and can also extend 
the short wavelength cutoff when compared to traditional methods

– Layers as thin as 3 nm have been demonstrated to be effective in 
suppressing the oxidation of aluminum

Stability of Al mirror (sample K series) coated with thin AlF3 layer by ALD
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California Institute of TechnologyAluminum Evaporation Rate Dependence

• Even in UHV conditions (base pressure ~ 2 x 10-9 Torr), the 
reflectivity dependence on evaporation rate is significant
– Impact on the saturated value of reflectance as well as the 

rate of degradation
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Model fits (dotted lines) of measured (symbols) FUV reflectance of unprotected (sample K1) and 
AlF3 protected samples (K2 to K5). 
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• Conventional Thermal Evaporation (Z11, Z15)
• ALD of AlF3 on e-beam Al (K5 and Q11)
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• FUV reflectance of 
o tri-layer mirror samples produced by conventional thermal evaporation 
o bi-layer mirror samples produced by e-beam and ALD 

• Optimization of layer thicknesses necessary to improve performance

Ly-a 121.6nm
Ly-b 102.6nm
Ly Limit 91.2nm
Balmer-g 108.5nm
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GSFC Data Courtesy: Manuel Quijada
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The calculated reflectance at 121.6 
and 102.6 nm as a function of coating 
thickness for films of MgF2, AlF3, and 
LiF on ideal Al.

J. Hennessy, et al., JATIS 2(4), 041206 (2016)

Measured FUV reflectance (symbols) and the 
corresponding calculated optical model (dashed 
lines) of ALD AlF3 protective coatings of various 
thickness deposited on evaporated Al thin films.

Throughput after 3 reflections: with 60% R from each optic 
at 100nm, throughput will be 0.6^3 = 0.22 



Jet Propulsion Laboratory
California Institute of TechnologySummary

• Protected Aluminum mirrors with ~75% reflectance at 110nm with long term 
stability have been produced

• These mirrors  currently show  ~55% reflectance at 100nm 

• Protective fluoride layers coated with Atomic Layer Deposition indicate potentially 
better performance (>60% at 100nm) and stability

• References

• Balasubramanian, et al., Proceedings of SPIE  vol. 9602-19 (2015)

• Hennessy, J., April D. Jewell, Frank Greer, Michael C. Lee, and Shouleh Nikzad. 
"Atomic layer deposition of magnesium fluoride via bis (ethylcyclopentadienyl) 
magnesium and anhydrous hydrogen fluoride." Jl. of Vacuum Science & Technology 
A 33, no. 1 (2015): 01A125. 

• Hennessy, J., A. D. Jewell, K. Balasubramanian, and S. Nikzad, “Ultraviolet optical 
properties of aluminum fluoride thin films deposited by atomic layer deposition,” 
(submitted) Jl.of Vacuum Science & Technology A, JVST A 34, 01A120 (2016). 

• J. Hennessy, Kunjithapatham Balasubramanian, Christopher S. Moore, April D. 
Jewell, Shouleh Nikzad, Kevin France, Manuel Quijada, “Performance and prospects 
of far ultraviolet aluminum mirrors protected by atomic layer deposition,” J. Astron. 
Telesc. Instrum. Syst. 2(4), 041206 (2016), doi: 10.1117/1. JATIS.2.4.041206
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Backups
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Wavelength (nm) Species Significance
68.1, 69.4 Na IX Coronal Gas (> 106 K) Diagnostic (density,

ionization state, etc.)
77.0 Ne VIII Warm-Hot Gas (5105 - 106 K) Diagnostic (density,

ionization state, etc.)
91.2 H, Lyman Limit Ionization Energy of Atomic Hydrogen

97.7 C III Gas Electron Density Diagnostic

99.1, 175.0 N III Gas Temperature Diagnostic
102.6 H, Ly- Lyman Series H Recombination Line

103.2, 103.8 O VI Recombination Line Doublet
108.5, 164.0 He II Balmer- line for He
117.5 C III Gas Electron Density Diagnostic

120.6 Si III Optically thin emission line of Silicon

121.6 H, Ly- Lyman Series H Recombination Line

123.8, 124.3 N V Gas Emission Diagnostic
130.4 O I Geocoronal Triplet Emission Line

133.5 C II Absorption Line for ionized Carbon

139.4, 140.3 Si IV Emission Line of Silicon
140.7 O IV] Gas Density sensitive doublet
148.8 N IV] Gas Diagnostic Line – sensitive in particular to

electron collision strengths
154.8, 155.1 C IV Gas density-sensitive doublet

Courtesy: Paul Scowen
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1.2m thermal / ebeam evaporation chamber 
(Zecoat Corp) with a moving source

Beneq ALD reactor (JPL)
Oxford ALD reactor (JPL)
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Commercial solutions for large area atomic layer deposition include (left) systems for 

high performance optical coatings [MLD Technologies, mldtech.com], (middle) 

deposition on meter-class substrates for photovoltaic applications [Putkonen 2009], 

and (right) large area roll-to-roll ALD reactor [Beneq, beneq.com]
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Al+LiF Mirror FUV Performance  (GSFC) 
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Recipe: Al (43nm, ambient)+LiF(8nm, ambient)+LiF(16.4nm, 250°C)

Rave(100-150nm): 59% (FUSE) 75% (Hot) 

Manuel Quijada, GSFC
Sep 2014
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Manuel Quijada, GSFC
Sep 2014
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