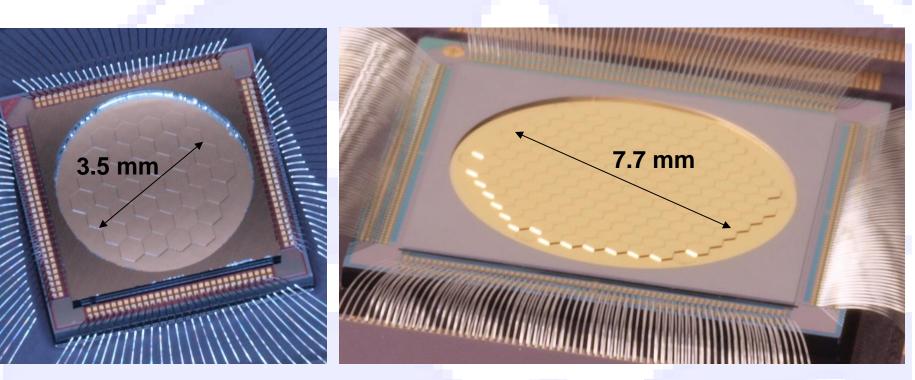
MEMS Deformable Mirror Development for Space-Based Exoplanet Detection

NASA Phase II SBIR: NNX11CE94P NASA Phase II SBIR: NNX14CG06C

Iris AO, Inc.

Michael A. Helmbrecht Iris AO, Inc.

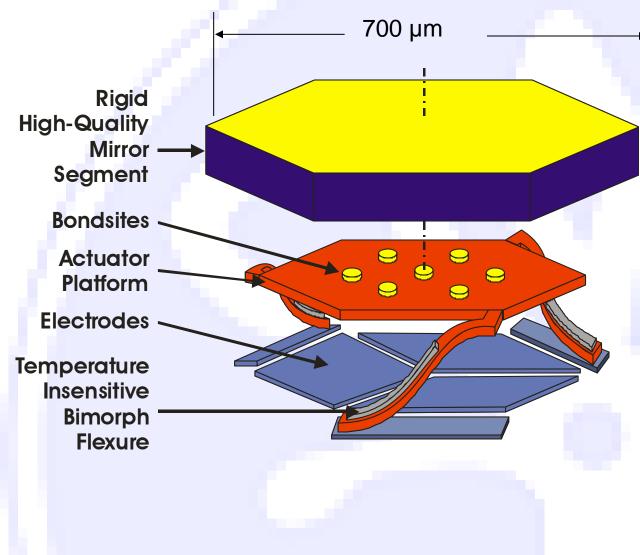
www.irisao.com michael.helmbrecht@irisao.com info@irisao.com


Approved for public release; unlimited distribution

Iris AO Segmented DM Background

^{www.irisao.com} Iris AO, Inc. Iris AO MEMS Segmented Deformable Mirrors

PTT111 DM


- 111 Actuators
- 37 PTT Segments
- 3.5 mm inscribed aperture
- Factory calibrated

PTT489 DM

- 489 Actuators
- 163 PTT Segments
- 7.7 mm inscribed aperture
- Factory calibrated

Iris AO Segmented DM Background

- 3 DOF: Piston/tip/tilt electrostatic actuation – no hysteresis
- Hybrid fabrication process
 - 3-layer polysilicon surface micromachining
 - Single-crystal-silicon assembled mirror
- Unit cell easily tiled to create large arrays
- Hybrid technology
 - Thick mirror segments
 - <1 nm PV/°C segment bow
 - Enables back-side stress-compensation coatings

www.irisao.com

C)

Hybrid Fabrication Process

Chip-scale thermocompresion flip-chip bond

Mirror-aperture clearing etch

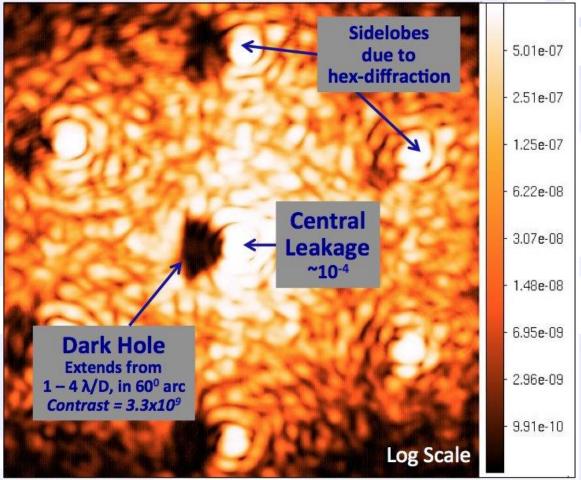
Microstructure release and optical coating 5

November 19, 2014

b)

C)

Mirror Technology Days 2014 - #43


NASA Application

Visible Nulling Coronagraph (VNC)

Iris AO, Inc. Exoplanet Imaging Requirements: WNC Technology

- Usable Dynamic Range (Stroke): 1.0 μm
- Segment Control Resolution: 15 pm rms
 - ATLAST: may now be 1 pm rms
- ~1000 Segment DM
- Segment Flatness: 1-3 nm *rms*

R.G. Lyon, M. Clampin, P. Petrone, U. Mallik, T. Madison, M.R. Bolcar, "High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control," Proc. of SPIE 8442 (2012).

10° Contrast @ IWA 1 – 4 λ /D Results GSFC VNC Instrument on 06/09/12

November 19, 2014

Phase II SBIR Development

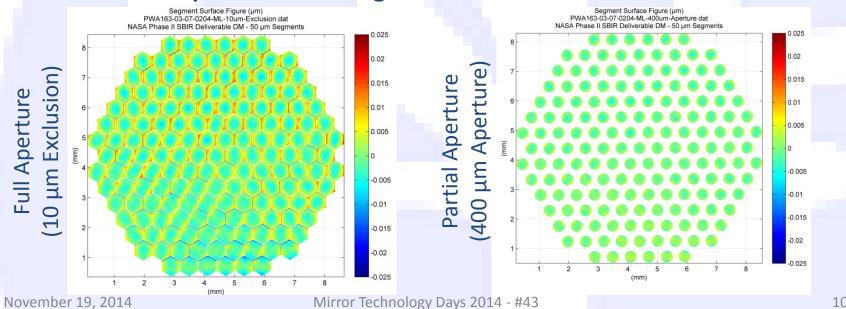
Critical Development for Manufacturing DMs for Exoplanet Detection

Phase II Objectives

NNX11CE94P

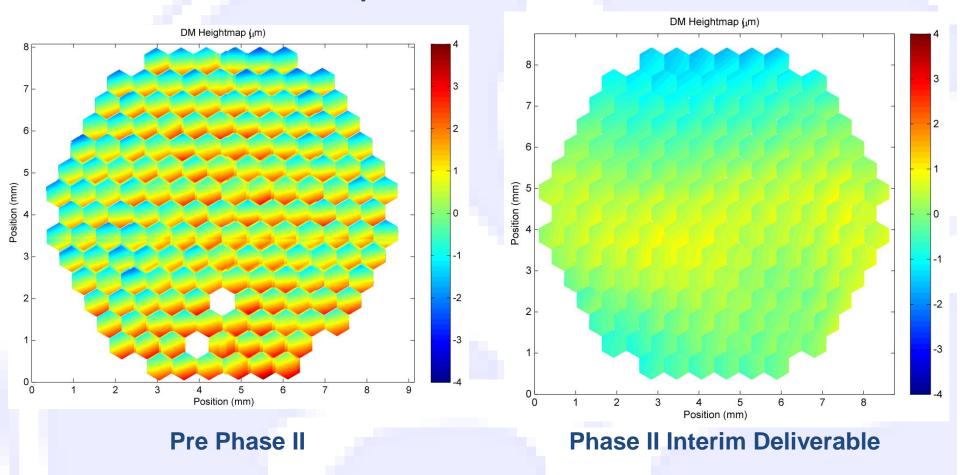
- Improve DM quality
 - Improve segment flatness for entire array
 - Reduce chip bow
 - Increase segment position uniformity
- Scale technology to 1000-actuator DM
 - Increase yield
 - Demonstrate PTT939 array
- Demonstrate pm-level positioning
 - 15 pm rms

NNX14CG06C


- Wafer Scale DM Assembly
- 16 Bit Electronics
- Hardware-based super resolution electronics controller

Mirror-Segment-Flatness Improvements

Segment Design	Average <i>rms</i> Errors	Worst <i>rms</i> Errors	
25 µm	12	22	Matches 1 st Order Theory Well: 4X reduction for 50
50 µm	3	4.5	μ m vs. 25 μ m segments
50 μm (400 μm Aperture)	1.5 (1.1, best result)	2.1	Phase II Goal: 2 nm <i>rms</i>
25 μm Optimized	5	8	If trends hold, ~1.25 nm
50 µm Optimized	NA	NA	<i>rms</i> over entire segment should be possible


50 µm-Thick DM Segments - Phase II Deliverable

Unpowered DM Figure Improvement

Unpowered PTT489 DM

DM Packaging Improvements

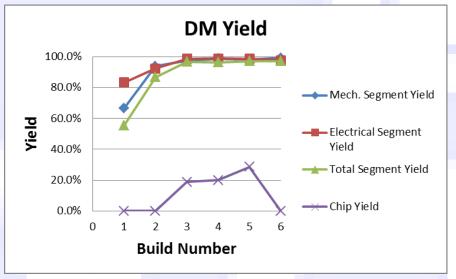
- Reduced mass
 - 1.26 kg \rightarrow 0.34 kg
- Reduced footprint
 - $-5''x10'' \rightarrow 2''x5.5''$
- Increased Thermal Stability (nm PV/°C)

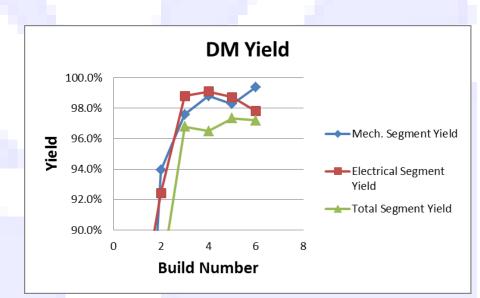
 $- 12.5 \rightarrow 3.5$

2nd Generation LGA Package

1st Generation PGA Mirror Interface Board

PTT489 - PGA						
	Weight	Mass				
Description	(oz)	(kg)				
PGA Package	1.9	0.05				
MIB PCB	13.0	0.37				
Mounting Block	29.6	0.84				
Total (summed)	44.5	1.26				
Total (measured)	44.5	1.26				
PTT489 - Compact LGA						
	Weight	Mass				


Weight	Mass	
(oz)	(kg)	
3.0	0.09	
2.5	0.07	
3	0.09	
3.2	0.09	
11.7	0.33	
11.8	0.34	
	(oz) 3.0 2.5 3 3.2 11.7	



DM Yield

DM		Mirror	Mech.	Electrical	Total	
Build	Actuator	Wafer	Segment	Segment	Segment	Chip
Number	Wafer Lot	Lot	Yield	Yield	Yield	Yield
1	PWA-02	LSM-01	66.8%	83.4%	55.7%	0.0%
2	PWA-02	LSM-02	93.9%	92.4%	86.8%	0.0%
3	PWA-03	LSM-02	97.6%	98.8%	96.8%	18.8%
4	PWA-03	LSM-02	98.8%	99.1%	96.5%	20.0%
5	PWA-03	LSM-02	98.3%	98.7%	97.3%	28.6%
6	PWA-04	LSM-02	99.4%	97.8%	97.2%	0.0%
7	PWA-05	LSM-03	TBD	TBD	TBD	TBD

- Ideally yield increases monotonically with every fabrication lot
- Defects in contact masks increased electrical failures for PWA-04 actuator lot
 - Defects were more uniformly distributed rather than clustered
 - Result: 0% chip yield
- Goal: fully functional PTT939 DM
- PWA-05 Run
 - New masks
- PTT939 DM will used DUV stepper photolithography
 - Fewer defects from lithography

NASA Phase II SBIR: Remaining Work

- NNX11CE94P
- Demonstrate PTT939 DM
 - Transition fabrication
 process to DUV stepper
 lithography system
- Demonstrate massreduced DM segments on a PTT489

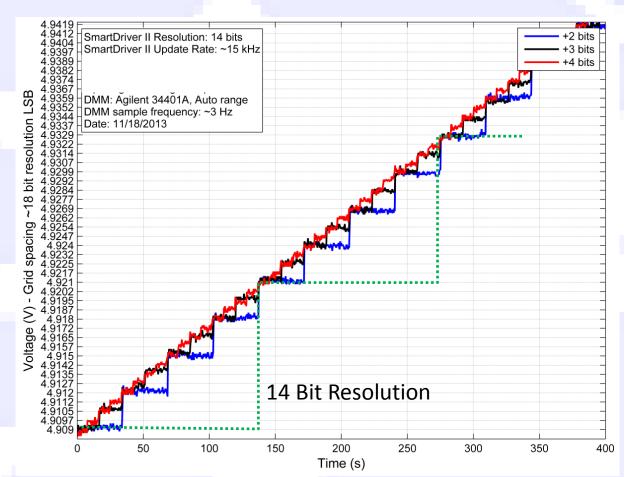
 Phase IIE

PTT939 DM 10.85 mm aperture 313 PTT segments 939 actuators

Electronics Development

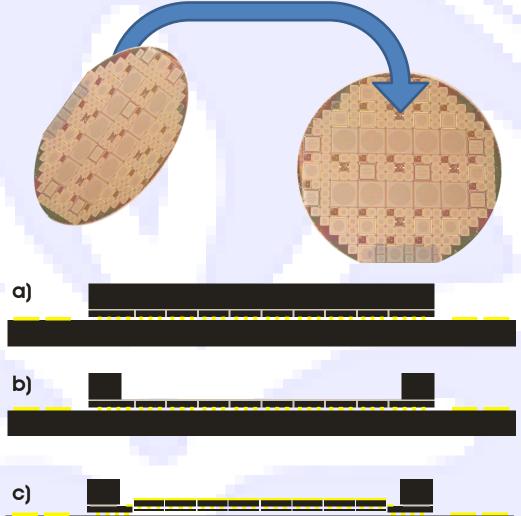
- Existing Iris AO Drive Electronics are 14-bit resolution
- NNX14CG06C Development
- 16-bit resolution HV driver card
 - Card built and preliminarily tested
- USB2.0 High Speed Interface
 - Microcontroller
 - FPGA to implement timing critical modulation
 - Windows and Linux compatible
 - Built, tested, and currently being incorporated into Iris AO interface software

High-Resolution Drive Electronics


- pm *rms* level control will require >20 bit electronics
 - $-2 \mu m$ stroke DM, 1 μm stroke after flattening
 - Nonlinearity in MEMS electrostatic actuation reduces resolution
- State-of-the art HV MEMS Drivers are 14-16 bit resolution
- Signal processing techniques can be used to increase resolution (super resolution)

- NASA New Technology Report to be filed

Super-Resolution Drive Electronics


- Electronics are 14 bit resolution
- Grid spacing is for 1 LSB on 18 bit resolution
- Super-resolution demonstration
 - +4 bits were demonstrated
- FPGA controlled signals will provide even better resolution

Scaling Up: Wafer-Scale Assembly

- DMs >1000 actuators require wafer-scaled assembly techniques
- Phase I demonstrate a scalable bonding technique using a eutectic bond
- Recent increased bond-tool tool capacity and process optimization enables waferscale thermo-compression
 - gives a lower risk path to wafer-scale assembly
- Eutectic bond will be developed as a back up plan

Summary

Technologies developed to produce DMs capable of meeting VNC requirements

- Segment flatness 2nm rms over VNC subapertures
 - Path to flatter segments
- Segment position variations reduced to suitable levels for testbed environment
- Compact, more thermally stable packaging
- Major yield improvements
 - Defects on recent PEA-04 run determined
 - Higher yields expected on PWA-05 run
- Demonstrated means to reach 20 bit drive electronics resolution
- Wafer-scale assembly under development
 - Enables scaling to 4th generation 1000 segment (3000 actuator) DM
- Design of 3rd generation 1000 actuator DM underway