

Improving LUVOIR FUV Instrument Capabilities through Enhanced Coatings

By Manuel A. Quijada

NASA Goddard Space Flight Center, Greenbelt, MD 20771

Overview & Objectives

- Methods to Enhance FUV Reflectance
- Results of E-Beam Reactor at NRL
- Conclusions

Overview and Objectives

Summarized Task Description

- ✓ Deposit high performance UV to FIR optical broadband coatings by designing/constructing hybrid thin film deposition/ fluorination chamber capable of depositing aluminum under ultra-high vacuum with the capability of adding a precursor gas to fluorinate the surface and form a thin AIF₃ layer to protect the AI from oxidation.
- ✓ Improved deposition processes of metal-fluoride protection coatings (MgF₂, AlF₃, LiF) on Al in order to boost reflectance performance.

Driver / Need

- ✓ High-performance broadband coatings (90-10,000 nm) have been identified as an "Essential Goal" in the technology needs for the Large UV/Optical/IR (LUVOIR) Surveyor observatory.
- ✓ Low reflectivity and transmission of coatings in the Lyman Ultraviolet (LUV) range of 90-130 nm is one of the biggest constraints on FUV telescope and spectrograph design.

✤ Benefits

✓ The development of broad-band reflectors based on Al with increased performance in the FUV spectral range will be an enabling technology for an instrumentation platform for astrophysics and optical exoplanet sciences with a shared telescope providing high throughput and signal-to-noise ratio (SNR) over a broad spectral range.

Hybrid PVD Passivation/Fluorination Chamber

XeF₂ is a dry-vacuum based method of reaction and requires no plasma or other activation minimizing damage to substrate.

Reactive fluorine compound with low bond energy used (e.g. XeF_2 with 133.9 kJ/Mole)

Heating of the XeF_2 may also be used if compound is not sufficiently reactive for increased selectivity.

NASA

AlF₃ as Aluminum Mirror Overcoat

Calculated Reflectance (Al: 70 nm)

Calculated data agree well with measured results

Predicted performance shows a 50-60% reflectance at 100nm

- A+AIF₃ PVD **3-step process**: AI (70nm) AIF₃ (24nm) \geq
- \geq Minimal changes in reflectance (after 6 months) with sample kept in ambient lab conditions (50% RH)
- Mirror Tech SBIR/STTR Workshop

≻

XeF₂ Fluorination of Fresh Al Task

UHV Research Chamber capable of thin film physical vapor deposition (PVD) and passivation.

Inside of chamber PVD components.

XeF₂ Gas feed components capable of continuous flow or pulsed flow.

Flash Coating of Aluminum Films

Aluminum coating thickness: 50-70nm @ 130-160 A/Sec

Mirror Tech SBIR/STTR Workshop

7

Al Before & After XeF₂ Treatment

- A Second bare AI sample (with native oxide layer) was treated in a XeF₂ reactor located in the Detector Branch (Code 553) at GSFC.
- 50 cycles (10 seconds per cycle) with a XeF₂:Nitrogen mixture with a 1:5 ratio.
- Sample remained optically shiny with a slight improvement in FUV reflectance.

XPS Results: 7.9% F-Al bonds after XeF₂ treatment

PS Line	As-received	Post Etch
2s	29.0	42.9
1s	35.5	49.2
1s	20.9	~
1s	14.5	7.9

- An initial **as-received** XPS scan was performed.
- A very etch is performed to remove light contamination and carbon: 10 sec of a 3 kV Argon Sputter raster beam
- A post etch XPS scan is performed

Atomic Layer Deposition Reactor Systems

General-purpose ALD reactor at UMD features:

- Reduced reactor volume (relative to previous reactor)
- Precursor manifold plumbed for Ar, TMA, water, DEZn' room for 3 additional precursors
- Optical access ports for real-time ellipsometry
- Exhaust gate valve for "exposure" –mode operation
- Accepts up to 2 in substrates
- ≻ RGA

Alumina ALD Growth

- Precursors exposure: 0.1s
- Post-exposure residence: 1s
- Purge: 20s TMA / 25s Water
- Precursors manifold T: 110^{oc}
- Cycles: 200

gpc ~ 1.3 A/cycle (ideal is 1.1/cycle)

Physical Vapor Deposition Ion-Assisted Process

PVD/ IBS UHV coating chamber (2-meter diameter)

- Procurement & installation of an in-situ optical monitor (λ = 121.6 nm); source, detector, port window, etc.
- Procurement & installation of electron-gun for ion-assisted deposition to create more densely packed metal-fluoride coatings.
- > Pumping system for this chamber is being refurbished:
 - ✓ Acquisition of new cryo-pump and compressor.
 - ✓ Procurement of various types of glass substrates (ULE and Zerodur) to evaluate effect of heating on figure error.

LAPPS Reactor at NRL

- The US Naval Research Laboratory's Large Area Plasma Processing System (LAPPS), which employs an electron beam generated plasma for etching and fluorination of Al samples.
- The schematic diagram illustrates the processing reactor, whereas the image on the upper right corner is a view of the plasma through a 6-inch port.

Motivation for e-Beam Etching

- Electron beam generated plasmas have demonstrated the ability to chemically modify 2-D materials while maintaining their unique characteristics.
- Electron beam generated plasmas have shown promise as a low damage etch source. Particularly in processing devices with integrated 2-D materials.
- They have also demonstrated selective, highly directional, low damage etching in SiN without pattern dependent etch characteristics in fluorine-based chemistries.
- The e-beam provides a low-energy plasma system to etch the surface of a sample with low damage probability.

L. Dorf, et al – AVS Symp. (2014)

How are e-beam generated?

- The injection of a 2 keVbeam into the background gas will directly ionize and dissociate the gas.
- Beam energy well above ionization threshold
- Higher beam energy = more efficient ionization

Bare Aluminum e-Beam Results: Trial 1

Reflectance results of bare AI sample with native oxide layer before and after treatment in the LAPPS reactor at NRL.

XPS Results: 6.6% F-Al bonds after e-beam treatment

XPS Line	As-received	Post Etch
Al 2s	29.3	48.0
O 1s	31.3	45.4
C 1s	27.5	~
F 1s	11.9	6.6

Bare Aluminum e-Beam Results: Trial 2

- > A bare Al coating made in 2009 was treated at the NRL LAPPS reactor (sample was measured before and after).
- Results indicate a gain in reflectivity of around 10% over most of FUV spectral range.
- > Reflectance performance was that of a sample with aging of just a few months (after plasma treatment at NRL).

Bare aluminum coatings before and after plasma etch/passivation @ NRL

XPS Results: 27.3% of F-Al bonds after e-beam treatment

Mirror Tech SBIR/STTR Workshop

Al+MgF₂ e-Beam Results: Trial 2

- \blacktriangleright Al+MgF₂ sample made in 2011 recently showed average reflectance of 60-70% in FUV.
- Sample was treated at the NRL LAPPS reactor and re-measured again.
- > Results indicate a gain in FUV reflectivity of around 20% over most of the FUV spectral range.
- Samples has remained stable after a second round of measurement (after plasma treatment at NRL).

Al+MgF2 Coatings before and after plasma etch/passivation @ NRL

Mirror Tech SBIR/STTR Workshop

- Predicted performance of an Al sample fluorinated with an AlF₃ overcoat would produce a sample with reflectance close to 50-60% at 100 nm and over 90% at wavelengths longer than 110 nm.
- An aluminum sample coated with an AIF_3 overcoat shows a stable reflectance after being kept in a normal laboratory environment (50-60% relative humidity) for a period of 6 months.
- We studied the feasibility of using the LAPPS reactor (developed at NRL) that employs a low energy- e-beam to etch away the native oxide layer from AI samples as well as thinning the AIF₃ and LiF layers for AI protected with these dielectrics.
- A second trial run of using a modified chemical etching at NRL provided an increase in FUV reflectance for a sample with a native oxide layer and a second Al+MgF₂ that had degraded after since 2011.
- Chemical analysis confirmed presence of F atoms on the surfaces of both Al samples treated at LAPPS (NRL) and XeF₂ reactor (GSFC).
- More studies with NRL e-beam reactor are planned in the future.

Acknowledgments

Javier del Hoyo, Vivek Dwivedi, Edward Wollack

NASA Goddard Space Flight Center, Greenbelt, MD 20771

Professor Ray Adomaitis

University of Maryland, College Park, MD, 20741

David Boris, & Scott Walton

Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375

Funding Sources:

- NASA Astrophysics Research Analysis grant # 15-APRA15-0103
- GSFC FY17 Internal Research & Development (IRAD) Program
- DRB & SWG supported via NRL based program