NASA Mirror Technology Days 2014

Mirror polishing technology with Tool Influence Function (TIF) for SiC

Jeong-Yeol Han, Myung Cho, Gary Poczulp, Jakyung Nah, Hyun-Joo Seo, Kyeong-Hwan Kim, Kyung-Mo Tahk, Dong-Kyun Kim, Jinho Kim, Minho Seo, Jonggun Lee and Sung-Yeop Han

Nov. 19, 2014.

Contents

Background: program overview

Technical viewpoints : Polishing of Φ 300 mm and coupon : TIF study

Result and Future Plan

1. BACKGROUND - PROGRAM OVERVIEW

1. Overview

Collaboration between KASI and NOAO

- KASI
 - SiC development in polishing and testing
 - Teamed with Green Optics (GO)
- NOAO
 - Technical support
 - Loan 3 SiC blanks (Φ300mm) and coupons

Period: January 2014-December 2015 (2 years)

jhan@kasi.re.kr

Deliverables: 3 SiC polished and test results

Kickoff meeting: March 2014

1. Overview - Material

SiC collaboration (KASI-NOAO)

3 SiC blanks with coupons shipped to KASI (1/2014)

Mirror ID numbers engraved; Coupon IDs printed at the back.

SiC Mirror and Coupon ID numbers

	Mirror Part	Mirror Serial	Coupon	Coupon 2
SSG	7090401	N/A	325	337
POCO	19752	21347	P01	P02
CoorsTek	6130317	7851805-4	3	4

1. Overview - Optical surface requirements

Measurements

Surface figure error was measured by **appropriate mount** specified with the optical surface facing vertically upward supported on three tooling balls placed under the 12 mm diameter holes on the rear surface of the mirror

Surface quality

- Surface figure error: less than 20 nm RMS
- Surface roughness : less than 2 nm RMS
- Surface imperfection: less than 40 um scratch, 500 um dig
- Subsurface damage: use best efforts to minimize
- Structure function: provide (determined by collaboration with NOAO)

1. Overview - Role and responsibility

Na	No. Cotogony Description		Role			Responsibility			Deview
INO	Category	Description		GO	NOAO	KASI	GO	NOAO	Review
1		Investigate polishability		E	A	Cr	R	Р	FR
2	Purpose	Provide polished prototypes	С	E	Α	Cr	R	Р	FR
3		Collaborate in design dev. & polishing	С	Ш	A	Cr	R	Р	FR
4		ATP preparation	E,C	ш	A,S	R,Cr	R	Р	FR
5		Polish eash of the three segments	С	ш	A	Cr	R	Р	FR
6		Record indication for difficulty or ease of working	С	Е	A	R,Cr	R	-	FR
7		Test the polished prototype segments	E,C	Е	A	R,Cr	R	-	FR
8		Measure surface figure with various temp.	E,C	Е	A	R,Cr	R	-	FR
9	General	Measure surface figure with various temp.	E,C	Е	A	R,Cr	R	-	FR
10		Deliver polished prototype segments	С	Е	A	Cr	R	-	Delivery
11	Executive summary Detailed description of polishing process		E,C	Е	A	R,Cr	R	and the second	FR
12			С	Е	A	Р	R	-	FR
13		Detailed description of acceptance testing process		Е	A	R,Cr	R	-	FR
14		Test data and resulting conclusion	E,C	Е	A	R,Cr	R		FR
15	Dolivory	Delivery location of prototype and final report		-	-	R	/-		Delivery
16	Delivery	Relevant expenses		-	-	R	-///		Delivery
17		Proprietary information	E	Е	A	R	R		Occasionally
18	Proprietary	Basic information	E	Е	A	R	R		Occasionally
19		Releasing or publishing of the technical information	Е	E	A	R	R	277-277	Occasionally
20	Montingo	Review meeting (shall occur not later than 2wks prior to delivery) Undecided contact by NOAO		E	A	R,Cr	R	11-11	RM
21	weetings			А	E	<u> </u>	0-0	R	Occasionally
22	Figure error		С	Е	A	Cr	R	2/-//	FR
23		Surface roughness	С	Е	A	Cr	R	222	FR
24	Surface	Surface imperfactions	С	Е	A	Cr	R	-	FR
25		Minimize subsurface damage	С	Е	A	Cr	R	-	FR
26	6 Provide a structure function		С	Е	Α	Cr	R	Р	FR

	А	Approval	R	Responsibility	КОМ	Kick-Off Meeting
Asronum	С	Control	Cr	Control	FR	Final Report
Acronym		Execution	Р	Partial	RM	Review Meeting
	S	Support				

1. Overview - Development schedule

1. Overview - Risk management

#	Risk and effectiveness	Prob.	lmp.	Mitigation plan	Consor tium	Status (Due)
	 Rick: Environmental testing Not fully equipped facility in KASI 			 Preparation of the facility Find funding sources to purchase 	KASI NOAO GO	Finish ('15.09)
1	 Effectiveness Not fully certified mirrors in operation condition 	L	Μ	 Adjust testing plan Mild temperature condition 	NOAO KASI	Finish ('15.04)

2. TECHNICAL VIEWPOINT - POLISHING PROGRESS FOR COUPON

jhan@kasi.re.kr

my and Institute

2. Polishing configuration for coupon

Slurry grain size - 1st stage: 9, 1 um - 2nd stage: 6, 1 um Rotation speed - Cam: 21 rpm - Spindle: 64 rpm

2. Polishing configuration for coupon

2. Figure error – before polishing of coupon

2. Figure error – Interim results (for 2 days]

jhan@kasi.re.kr

2. Figure error - meet requirement (Nov. 8, 2014)

jhan@kasi.re.kr

2. Surface roughness

Req. = 2 nm rms

a zygo			
	PV	133.246	nn.
	rns	2.683	nn
	Ra	1.792	nn
	Size X	1394.58	j.m.

	₽V	30.667	ram.
→	rms	0.892	nn
	Ra	0.538	nn
	Size X	1394.58	1,1m
	Size Y	1045.94	12M

Slurry grain size: 6, 1 um

K

Korea Astronomy and

Space Science Institute

3. TECHNICAL VIEWPOINT - POLISHING PROGRESS FOR Φ300

3. Polishing configuration for Φ 300 mm SiC

Polishing

Slurry grain size - 6, 1 um Rotation speed - Cam: 21 rpm - Spindle: 64 rpm

Ρ

a

d

3. Polishing of Φ 300 mm SiC

Preparation of Jig

단면 A-A 축척 1 : 5

> 소재 : 아세탈 or MC 수량 : 1ea

3. Polishing of Φ 300 mm SiC

For edge correction : SUBA pad (1st stage) → #73 pitch (2nd stage)

3. Figure error – interim result (Nov. 14th)

jhan@kasi.re.kr

4. TECHNICAL VIEWPOINT - TIF STUDY

4. TIF model development

Preston Equation: $\Delta z = \alpha PV \Delta T$ (Depth of TIF vs. Input variables)

4. Polishing tool – requirement and specification

ltems		Detailed items	Ranges / Spec.	
Req.	TIF shape		Gaussian type	
		Rotation speed	15~1000 rpm	
Spec.	Wheel	Contact width	3.8 ~ 3.9 mm	
		Contact area	6.0 ~ 6.5 mm ²	
	Rotational axis (Radial direction)	Rotation speed	4~60 rpm	
		Motion control item	Rotation angle Dwell time	
	Load cell	Measurement ranges	Min.: 0.1 psi Max.: 10 psi	
Development		KASI, SphereDyne, YoonSeul		

4. TIF generation on coupon

jhan@kasi.re.kr

4. Preston equation and TIF comparison

jhan@kasi.re.kr

4. TIF analysis

TIF analysis

Corresponding coef. of material removal (α) : 6.36 (um/(psi·hour·m/sec))

Korea Astronomy and

Space Science Institute

K

jhan@kasi.re.kr

Az vs. V (Depth vs. Relative Velocity)

Δz vs. Δ T (Depth vs. Dwell Time)

Az vs. P (Depth vs. Wheel Pressure)

4. TIF analysis – in detail

TIF analysis

Az vs. V (Depth vs. Relative Velocity)

5. Results and Implication

KASI-NOAO collaboration was established for core technology development of various SiC materials

Successful results for SSGTM coupon from NOAO

- Surface figure error: 12.3 nm rms (req. 20 nm rms)
- Surface roughness: 0.9 nm rms (req. 2 nm rms)

Works in progress for Φ 300 mm SiC from NOAO

- Figure error: 130 nm rms (req. 20 nm rms)
- Currently working on SSGTM and two more blanks in this year

Present TIF patterns in progress

 Well correspond with Preston Eq. → We plan to use the TIFs as a standard SiC TIF

6. Future SiC development plans

- KASI future plans for SiC development study
 - Preparation for next Phase SiC development
 - Size: lightweight 500 mm SiC mirrors
 - Shapes: Off-axis, Convex and Concave aspheric
 - Scope: Development of material process, polishing, metrology
 - Period: 2016~2018 (3 years)

KASI plan to collaborate with vendors and universities

- Material: SKC solmics, Orange E&C, Wonik Q&C, Dandan, University of Seoul
- Polishing: GO, KBSI, Yonsei University
- Continue to study TIF: Generate and analyze TIFs
 - Build up a TIF map for various SiC materials
 - Could be provided a valuable TIF information for SiC

