Computational Multi-spectral Imaging

Rajesh Menon

http://lons.utah.edu/

Department of Electrical & Computer Engineering

University of Utah

NASA MirrorTech 2017

Our Goal: Compact snapshot hyper- (or multi-) spectral camera

Spatially-variant & spectrally-variant PSFs

Step 2 – Mathematical description

The architecture of our multi-spectral imager

Diffractive-Filter Array (DFA)

Spatial-Spectral Response Calibration

Results

Reconstructed RGB image

Multi-spectral video is possible

Spectral Response: 25 bands, FWHM ~ 12nm

Note low sensor QE limits SNR for λ >~700nm.

Spectral Reproduction Error < 8%

Spatial Resolution

Modulation Transfer Functions

C. G. Ebeling, A. Meiri, J. Martineau, Z. Zalevsky, J. M. Gerton and R. Menon, "Increased localization precision by interference fringe analysis," *Nanoscale*, 7, 10430-10437 (2015)

Imaging NIR & Vis bands with single sensor

Multi-spectral image

NIR image

Reconstructed RGB

No discernible crosstalk

Computationally trade-off spatial & spectral resolutions Same hardware

50 X 50 pixels X 9 bands

 $\lambda = 580$ nm

 $\lambda = 670$ nm

Imaging with non-equal bands: same hardware

Computational spectral filtering: same hardware

NIR laser spot

Multi-spectral image: 288X288 pixels X 25 bands Higher NA lens

Lumos Confidential

1

Rendered RGB Image (288 X 288 pixels)

Raw sensor Image

solid lines = reconstructed

each circle represents value in 16 X 16 pixel patch

We demonstrated:

- compact
- lightweight
- multi- or hyper-spectral
- programmable spectral bands (no change in hardware)
- low-cost

Commercializing a system like this with > 8 spectral bands Lumos Imaging

Flat Lightweight Optics

- Thin, lightweight
- Broadband (UV, Vis, IR)
- High NA possible
- Full wavefront control
- High efficiency
- Transmissive or Reflective
- Inexpensive to mass manufacture

Applications:

- Flat lens imaging
- IR projectors
- Holograms
- Security devices

Flat-lens camera

Demo camera with single flat lens (focal length=1mm, f/#=10)

PCB

Video under sunlight

- Reduced thickness
- Fewer lens elements → less expensive assembly
- High NA → thinner HMDs
- Novel form factors

Flat broadband MWIR lenses possible $\lambda = 8\mu m$ to $12\mu m$

Example PSFs at NA = 0.05. Material used is polymer.

Depth-of-field

Dynamic range

Spectral response for NIR-VIS imaging

