

Lightweight Deformable Mirrors for Space Telescopes

Keith Patterson (Caltech)

Mirror Technology/SBIR/STTR Workshop Northrop Grumman Aerospace Systems Aerospace Presentation Center

10/2/2013

Future Large Space Telescopes

- How to build low cost aperture > 10 meters in diameter?
 - Segmented primary mirror
 - Many segments
 - Multiple launches, expandable
 - On-orbit autonomous assembly
- Mirror segments
 - Lightweight
 - Identical (nominally spherical)
 - Lower cost
 - Redundancy
 - Ease of manufacture and test
 - Active

AAReST Mission

General Mirror Concept

Fluoropolymer

- Thin laminate Polished glass wafers
 - Piezopolymer coating
 - 0.5 kg/m^2
- Bimorph actuation
 - In-plane strains create mirror curvature
 - Thin, low areal density
- Actuation patterns
 - Independent regions for fitting of mirror surface shapes

→Activated layer

Mirror Fabrication Process

- 1. Polished glass wafer (~225µm)
- 2. Slump at ~650C over FS/quartz mandrel*
- 3. Coat Cr+Al laminate (~3µm total)*
- 4. Roughen mirror backside with HF vapor
- 5. Sputter ground layer (Ti+Au+Ti, 10+50+10nm)
- 6. Spin coat + bake piezo layers 140C (20μm)
- 7. Sputter blanket electrode (Ti+Au, 10+10nm)
- 8. Evaporate electrode pattern (Au, 100nm)
- 9. Pole active material layer to 100 V/ μ m
- 10. Ion mill etch back blanket electrode
- 11. Wirebond electrodes and mount mirror onto PCB

Substrate slumping

reflective side

Piezo Polymer Properties

- Critical temperatures
 - Tg: ~ -40C , glass transition (very gradual)
 - Tc: +110C, Curie
 - Tm: >140C, melting
 - Td: >400C, decomposition
- Low moisture absorption (<0.01%)
- Viscoelastic
 - Creep master curve to be measured soon
 - Good news: glass substrate will dominate shape over time and maintain molded shape

Piezo Polymer Properties

- Data from
 - JPL polymer lab (TMA, DMA, DSC, TGA)
 - Caltech material testing (Instron, optical measurements)
 - Sandia (Dargaville, 2006) report on piezopolymers in space (piezo measurement)
- Large variation in properties across temperatures
- Stiffness and piezocoefficient have opposing trends, somewhat balance out

Operating Temperature Range

- Actuation stress fairly flat, optimal peak ~-40C
- Mirror stroke (for defocus mode)
 - +/-40 microns at 20C, +/- 60 microns at -40C
- Thermal balance important!
 - Thermal expansion overrides piezo range in <10C
 - Tuned balancing of mirror can extend operational range

Kinematic Mirror Mounting

- Tiny Au wirebonds connect mirror electrodes to PCB pads (via holes)
- Kinematic mounting to PCB
 - Spheres pinch mirror in 3 places, preloaded and aligned using a magnetic field

Current Configuration

Control Electronics - Alternatives

Deformable Mirror

Electrodes

Piezopolymer

Ground

Substrate

Coating

- High voltages required (+/- 500V)
- Current multiplexer weighs ~10x more than the mirror itself
- Future investigation into printable flexible OFET multiplexing integrated onto DM substrate

41 Channel Lab Prototype

- Upgrade from previous 16 channel design
- Marie's optimized "Notre Dame" actuation pattern
- Process improvements still ongoing
 - Reliability

Α

Quality

Β

Influence function measurements via Shack-Hartmann

Development Functional Tests

- Demonstrated 16-channel and 41channel prototypes
- Electrical
 - Multiplexer prototype tested to +/-500V
- Thermal
 - Piezopolymer survival retained functionality down to -70C and >90C (for 1 hour)
- Mechanical
 - Future test: launch restraint acoustic testing

Performance Tests

- Optical
 - 16 channel prototype on 200 micron Si substrate
 - Achieved 1.3 microns RMS WFE error in lab environment
 - 41 channel prototype on 200 micron glass substrate
 - ~10% channels shorted, 0.5 microns RMS WFE corrected (assuming 100% working channels), trying again soon
 - Current limitations
 - Substrate initial figure (need slumping)
 - Polymer coating quality (shorts during poling step)

- Thermal
 - Future: mirror thermal shape stability and actuator stroke verification

AAReST Optical Layout

AAReST Performance Simulation

Error sources:

Performance Analysis Model

Example Performance Trial

Performance Results (Compact)

Conclusion

- Lightweight mirror concept has been demonstrated
- Material properties data collected and functional testing completed, no insurmountable roadblocks (as yet)
- Refinement of fabrication processing ongoing
- Environmental testing needs to be done
- Hope to fly mirrors in AAReST Cubesat tech demo in late 2015/early 2016

Acknowledgements

- Sergio Pellegrino, Marie Laslandes, John Steeves, Jim Breckinridge, Erin Evans, Kristina Hogstrom (Caltech)
- Caltech Ae105 classes
- Namiko Yamamoto, Risaku Toda, Victor White, Harish Manohara, Andrew Shapiro, Bill Warner (JPL)
- Keck Institute for Space Studies
- A part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA)

backup

Dynamic Behavior

Error Budget Values

- Mirror temperature: -20C to +20C
- Camera temperature: -20C to +20C
- Mirror initial shape bounds (surface amplitudes, non-normalized, microns, +/-):
 - Z4 = .002; astigmatism_0
 - Z5 = .005; defocus
 - Z6 = .002; astigmatism_45
 - Z7 = .001; trefoil_x
 - Z8= .001; coma_x
 - Z9 = .001; coma_y
 - Z10 = .001; trefoil_y
 - Z11 = .0005; tetrafoil_y
 - Z12 = .0005; 2_astigmatism_0
 - Z13 = .001; spherical
 - Z14 = .0005; 2_astigmatism_45
 - Z15 = .0005; tetrafoil_y
 - Z16:66 = .0001; higher order modes
- Boom deflection bounds (+/-):
 - X: 0.625 mm
 - Y: 0.625 mm
 - Z: 0.127mm
 - Tip: 0.04 deg
 - Tilt: 0.04 deg

Error Sources

Error Sources

Performance Results (Wide)

Thermal Traces: 11am/11pm SSO

The Model:

- Planetshine on
- Albedo on
- Sunshield (white paint, black chrome)
- .5 W generated/circuit board
- Temperatures between -10C and +10C
- Some radial thermal gradient present (due to board heat)
- Want surface temperature and emissivity underneath mirrors as uniform as possible to minimize gradients

Cold Case: No Power

Temperature (C)

The Model:

- 11 AM 11 PM Sunsynchronous orbit
- Planetshine on
- Albedo on
- Sunshield (white paint, black chrome)
- 0 W generated/circuit board
- Drops down to -60C
 - Need to ensure mirror survival here
 - Can improve conduction to mirrorcraft
- Minor thermal gradient

Sun Pointed (Lost Control) – Hot Case

The Model:

- 11 AM 11 PM Sunsynchronous orbit
- Planetshine on
- Albedo on
- Sunshield (white paint, black chrome)
- .5 W generated/circuit board
- Telescope orbits with mirrors facing the sun
- Mirrors warm but still within survival range
- Solar irradiance may reflect into camera if mirrors are aligned

DM Package Block Diagram

Launch Survival

- Mirror mass is ~4 grams (0.5 kg/m^2)
- Acoustics are most concerning
 - Delta IV-Heavy acoustic loads (conservative case)
 - Clamping points have critical stresses
- Likely will require mirror launch restraint RSS of curvature over all freqs

Primarily COTS Components

CATICHNOLO

- Mirror board
 - Mirror
 - PCB
 - Launch restraint system
- Gimbal
 - 3 Newport Picomotors (8301-UHV)
- Multiplexer boards
 - Panasonic AQV258 PhotoMOS relays (1 per channel)
 - Maxim MAX6956AAX+ LED driver IC's
- Controller board
 - M/C options
 - Rascal micro (Atmel ARM9)
 - MBED M/C (ARM Cortex-M3)
 - Apex/Cirrus HV Opamp (PA89A)
 - EMCO (AH06N-5T, AH06-5T)
 DC-HV DC converters
 - Zigbee wireless (TI CC2520)

Zigbee

M/C's

Mirror Control Architecture

 Single high voltage signal multiplexed into N channels

 Trades bandwidth for mass, power, volume

10 cm

Multiplexer Prototype (42 chnls, +/- 500V) 34

Multiplexing Concept

Mirror Actuation Modes

(Color scales in waves at 633 nm)

Mirror Control Experiments

Mirror Control Experiments

Poling Data

Operating Data

