Advances in active edge control, as applied to 1.4m hexagonal mirror segments

Prof. David Walker

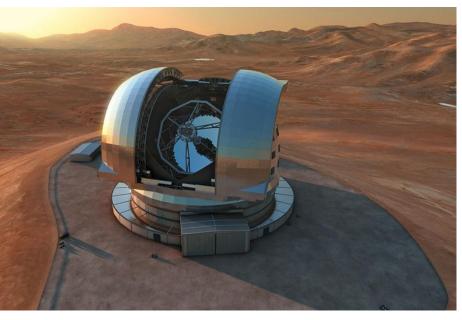
Zeeko Ltd, Glyndŵr University, University College London

Based at the National Facility for Ultra Precision Surfaces, OpTIC, N. Wales

OpTIC

Outline

- Context of the European Extremely Large Telescope
- New process chain
- Challenge of edges
- Results achieved



Context – the 39.3m aperture "E-ELT" *European Extremely Large Telescope*

Artist's impression

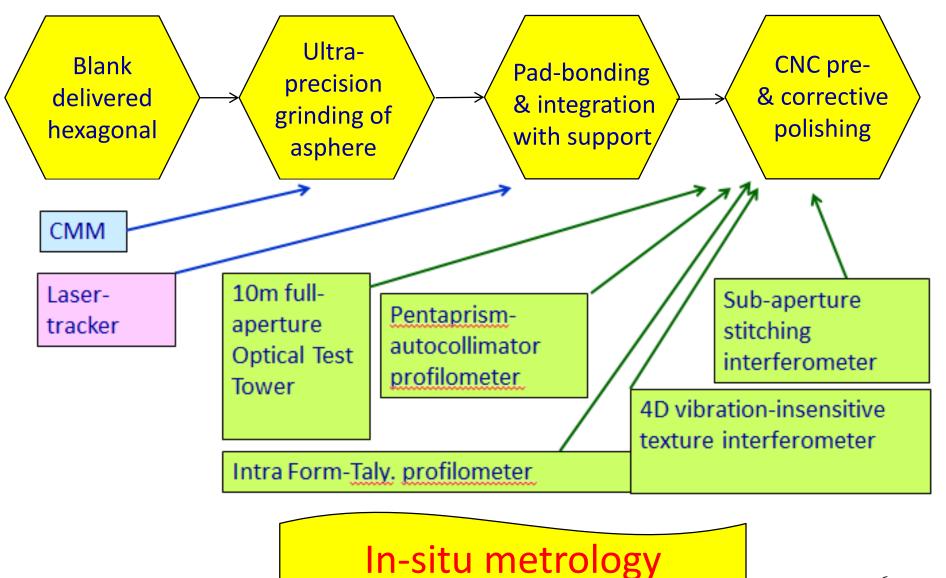
- Optical/IR telescope
- Originally 42m primary R=84m
- De-scoped to 39m, R=69m
- 798 segments + 133 spares
- 1.4m a/corners hexagons

Off-axis aspheric prototypes:- ESO surface specification (very abridged!)

	Average	Max.
Form RMS (excluding 10mm edge-zone)	25nm	50nm
Form RMS (Mid spatial frequency component:- low-order terms removed)	7.5nm	15nm
Edge-zone mis-figure PVq (95%)	100nm	200nm

Prototype segments

- REOSC-SAGEM (France) have manufactured prototypes for ESO using a process-chain:-
 - Polish roundals
 - cut hexagonal
 - Ion figure
- ESO commissioned OpTIC to develop a new process-chain and manufacture prototypes
 - Final hexagonal shape throughout



New process chain

Acknowledgement:- Cranfield University

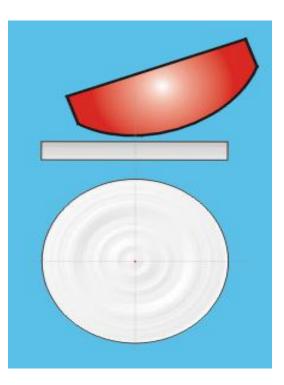
High-speed grinding the off-axis asphere

BoX[™] machine

Machine & process designed by Cranfield University Manufactured by Cranfield Precision Ltd

Three E-ELT prototype
segments successfully ground



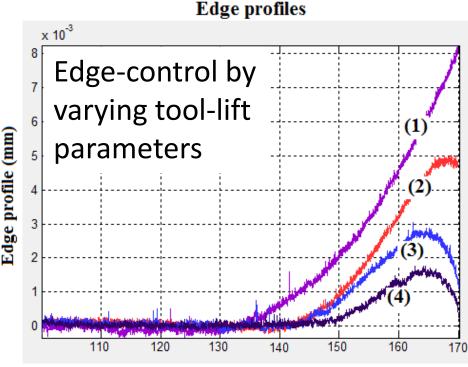


Polishing Facility at OpTIC, N. Wales

Precession[™] bonnet polishing

Vary influence function size, as the polishing spot approaches the edge of the part

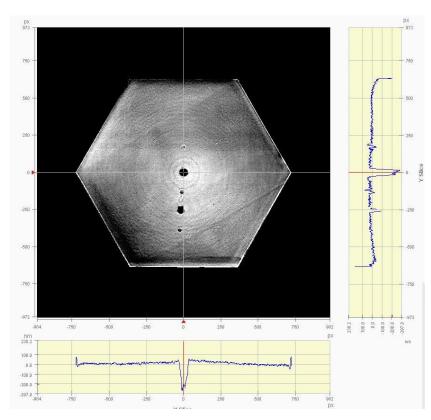
Segment edge strategy


- Raster tool-paths with small polishing spots
- 1. Apply only *half* the specified 1mm x 45° bevel 2. *Precession*[™] polishing
- - Spot-size control to create raised edges
 - Dwell-time moderation to control form

Surface aperture (mm)

Segment edge strategy (contd)

- 3. Polishing on Zeeko machine with rotating hard-pitch tool
 - Lower the raised edges
 - Hydrodynamic slurry effects roll the extreme edge
- 4. Apply the final half of the bevel



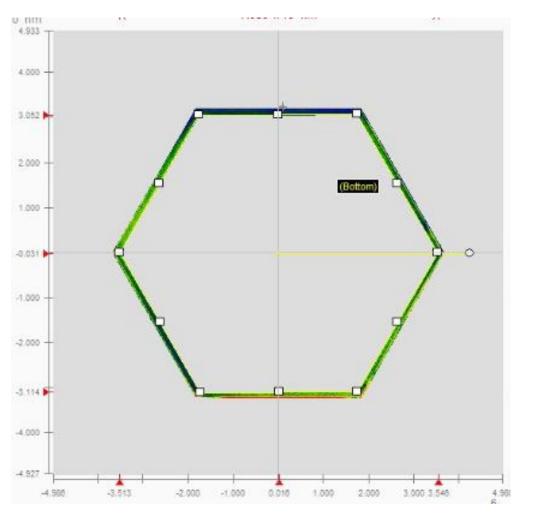
SPN04 – delivered and accepted

25.00

-25.0

-76.00

Full Aperture to edge Only tip/tilt removed 23nm RMS Surface


GLYNDWR UNIVERSITY WREXHAM

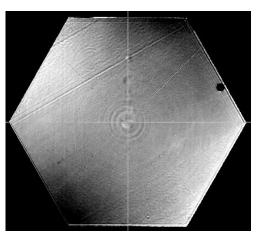
10mm edge zone cropped, ESO low-order allowances removed, CGH artifacts masked 10nm RMS Surface

your way

and my man

Edge result on SPN04

Edge-zone isolated from bulk data and analysed separately


172nm PVq (95%) surface

SPN01 delivered & accepted

- Uncertainties represent *repeatabilities*
- Absolute RMS accuracies estimated as:-
 - 21nm (form)
 - 13nm (form, low orders removed)

RMS form (exc	luding the 10m	ım wide	25.4nm ±	4.8nm	
edge-zone); No	low-order allo	owances			
removed					
RMS form (exc	luding the 10m	ım wide	7.5nm ± 2	2nm	
edge-zone); Lo	w-order terms	removed			
Six edges (PVq	95%)		Worst	263nm	
			Average	199nm	
			Best	117nm	

SPN03 – almost complete

• Awaiting final polishing run before arranging acceptance by ESO. Current status as follows:-

RMS form (excluding the 10mm wide	24.9nm
edge-zone); No low-order allowances	
removed	
RMS form (excluding the 10mm wide	9.8nm
edge-zone); Low-order terms removed	
Six edges (PVq 95%)	All < 200nm PVq (95%)



Cranfield Precision Ltd New generation of CNC ultra-precision grinding machines

New 1.2m machine Grinding trials expected end-2014

Machines to match Zeeko family (including 1.6m version)

Summary

- Segments delivered are the only E-ELT prototype segments that meet form & mid spatial specs
- First demonstration manufacturing in hexagonal format throughout, including edge-polishing
- Complementary roles:-
 - OpTIC offers process development and polishing
 - Zeeko & Cranfield Precision manufacture machines & metrology instrumentation
- Working to establish industry consortium to bid for share of segment manufacturing contracts

Thank you!

ACKNOWLEDGEMENTS

NASA SBIR grant proposal No. S4.04-9574 ESO: segment prototype contract Substantial financial support from:-

- Glyndŵr University
- UK funding agencies: EPSRC, STFC and TSB
- Welsh Government

Zeeko Ltd: Build of IRP1600 machine and tech. support Cranfield University and Cranfield Precision Ltd: development of BoX grinder and grinding of segments

