## Advances in Adaptive Mirrors for Advanced Telescope Systems

#### **Mirror Technology Days**

3 October 3013 20 minutes

John A Wellman Jeff Cavaco Northrop Grumman AOA Xinetics

Approved for public release, distribution unlimited. Northrop Grumman Case 13-1896 dated 9/26/13

VALUE OF PERFORMANCE

NORTHROP GRUMMAN

### AOX Setting the Standard for Adaptive Optics Technology

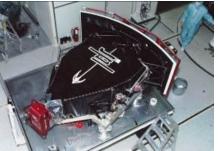
 AOX is a strategic business unit of Northrop Grumman Aerospace (NGAS) division formed in 2010 by the merger of Adaptive Optics Associates (AOA) a leader in wavefront sensing and control, and Xinetics a leader in active and adaptive optical components



- AOX focusing on advancing the state of the art of Active Optics (AO) technologies
  - Improving and maturing conventional actuator and Deformable Mirror (DM) technology
  - Inventing new architectures with unique characteristics to expand DM performance and applicability
  - Applying actuator and DM technology to new applications to enable game changing optical systems

# AOX continues to built on a legacy of innovative solutions in active and adaptive optics




RTHROP GRUMMAN

ΑΟΧ

Laser Communications & Compact Laser Terminal



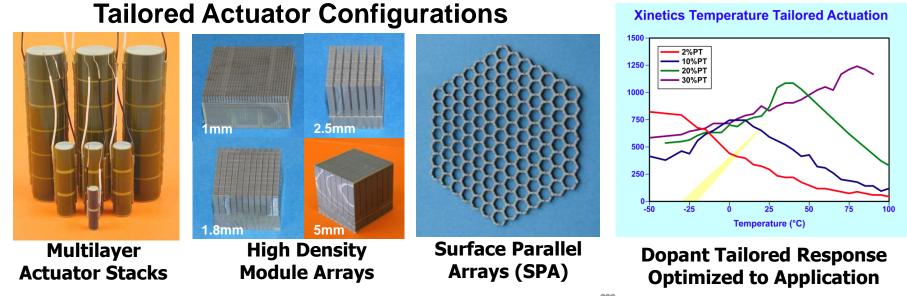
Directed Energy & Lightweight Beam Director



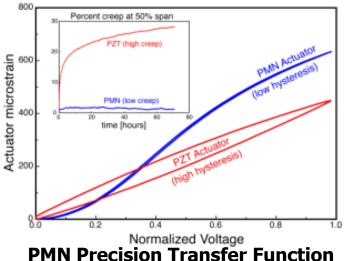

Space Imaging & Segments in the Large

## AOX Deformable Mirror Configuration Overview

NORTHROP GRUMMAN


ΑΟΧ




AOX deformable mirrors utilize novel actuator technologies to address wide range of AO system requirements and applications

# Precision Motion with PMN Actuators ... Precision motion from precision actuators





- AOX electrostrictive Lead Magnesium Niobate (PMN) multilayer cofired actuators tailored for deformable mirror applications
- Tailored configurations to meet actuator spacing, stroke and force requirements: Stacks, Modules, SPA arrays
- Tailored material response optimized for displacement and hysteresis over desired operating temperature range
- Exceptional precision compared to other actuator technologies
  - Exhibits little to no hysteresis, aging or creep
  - Fabricated for 0-100V operation



# Deformable Mirrors for Compensated Imaging Systems ... Atmospheric Compensation via Adaptive Optics



#### **Conventional Deformable Mirrors**

- Standard 5 & 7-mm Spacing
- Standard 4-mm Stroke
- 37 to 941 Channels



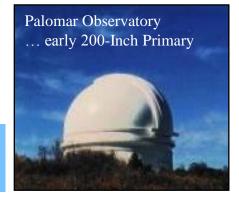

Module Deformable Mirrors > 1.8, 2.5 & 5mm Spacing

- Stroke of 1.5 to 4.0 microns
- Up to 3369 Channels



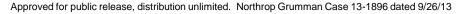
SPA Deformable Mirrors
4, 6 & 10 mm Actuator Spacing
Stroke of up to 50 microns

Up to 420 Channels



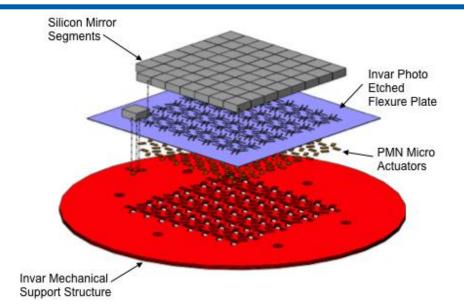

ORTHROP GRUMMAN

ΔΟΧ

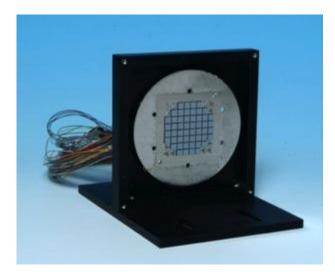

Starfire Optical Range ... with Laser Guide Star






- Industry standard deformable mirror
  - ~200 mirrors in operation around the world
- ULE facesheet typically used to reduce thermal distortion
- Stroke range typically ±2 micron
- High bandwidth required for atmospheric compensation
- Designed for near infinite life
  - Numerous mirrors have been in operation for nearly 20 years
  - >32 giga cycles without performance degradation

## Advanced deformable mirror technology furthering the ability of ground based astronomy to see through the atmosphere




### AOX Segmented Deformable Mirror New Developments in DMs for Compensated Imaging

- Segmented deformable mirrors developed to address issues associated with branch points in conditions of strong turbulence and scintillation
- AOX segmented DM based on PMN actuation and ULE facesheet is compatible with HEL coatings with high residual stress
- Micro-machined unimorph PMN actuators move 5mm X 5mm segments in piston, tip and tilt
  - >5µm piston range, ±2mrad tilt
- Unimoph PMN actuators produce high force and mechanical leverage without snap back limitations or contamination concerns that are typical of electro-static MEMs devices
- Piston/tip/tilt capability reduces number of segments 9X compared to piston only DM for same fitting error
- Prototype devices fabricated and tested
  - 8X8 and 5X5mm segment arrays scalable to much larger arrays



THROP GRUMM



#### NORTHROP GRUMMAN Integrated Wavefront Corrector (IWC) Mirrors

...Combines wavefront control with beam steering functionality

- Integrated wavefront corrector combines a • deformable mirror with a fast steering mirror (FSM) into one component for compact AO
  - Eliminates need to relay pupil from FSM to DM reducing number of optical elements in system
- Tilt Stage Element
  - Discrete PMN Actuators
  - Tilt range of ±0.5 mrad
  - Piston range of up to 22µm
  - High Bandwidth
- **Deformable Mirror Element** ۲
  - Works with either SNA or SPA mirrors
  - Designs produced with
    - Conventional DM 37 & 177 channel
    - SPA DM 76, 285 & 420 channel
    - Module DM 1024 channel



5-mm Array Spacing



7-mm actuator Spacing



ΑΟΧ

Spring Plate

Deformable

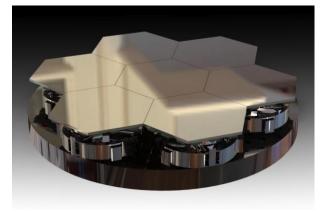
Mirror Element

Mount Posts

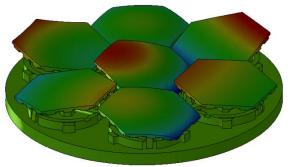
Tilt Actuator

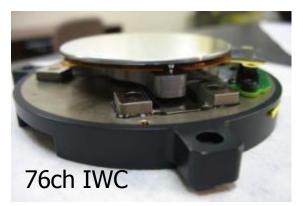
Base Plate

420 Channel SPA IWC 4-mm Array Spacing


Integrated wavefront corrector mirrors enable more compact and robust adaptive optics by combining FSM and DM functions in single component




#### Approved for public release, distribution unlimited. Northrop Grumman Case 13-1896 dated 9/26/13


#### IORTHROP GRUMMAN AOX Compact Integrated Wavefront Corrector (CIWC) New Developments in DMs for Compact Adaptive Optics

- Compact IWC developed to address phasing and figure correction for large segmented primary mirror applications
  - Can be used to correct phasing and figure errors on segmented PM
  - Alternately, can be used to simulate phasing and figure errors of a segmented PM in a test bed
- Each CIWC in a close packed array provides piston/tip/tilt phasing and SPA DM correction
  - SPA DMs combine large amplitude low spatial correction with high spatial correction
    - DM Segment Tilt >±1mrad
    - DM Segment Piston ±20µm range
    - DM Segment Focus >±40µm
- Current designs fabricated with 76ch SPA DM as well as 180ch Module DMs



AOX







#### Deformable Mirrors for Directed Energy Systems ... Larger Amplitude stroke & VLA coatings to Mitigate Thermal Errors



#### Solid State Laser > Uncooled ULE facesheet

- 2.5mm PMN Module Mirror
- 196 Channel

- HEL Deformable Mirrors
  - Uncooled silicon facesheet
  - > Woofer large amplitude stroke
  - Tweeter high spatial frequency correction

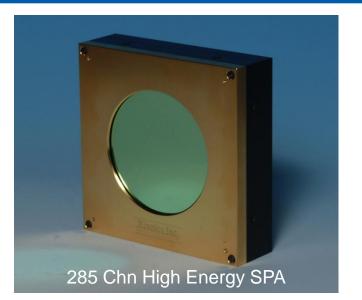


**SBL Deformable Mirror** 

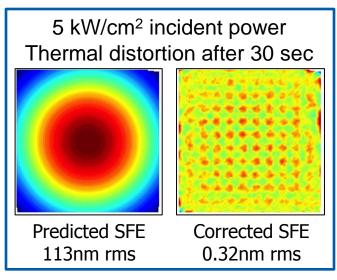
- Uncooled silicon facesheet
- > VLA multi-layer dielectric coating
- PMN Multilayer Actuators







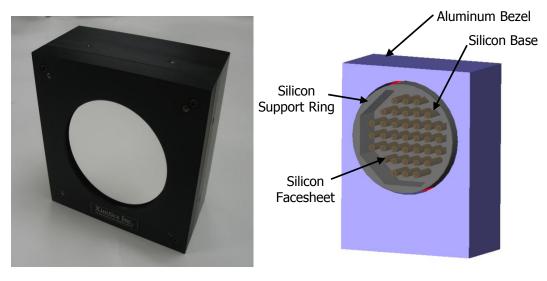

- Very Low Absorption (VLA) optical coatings reduce thermal loads and need for active cooling
  - Mirror must be compatible with VLA deposition temperatures and high residual stress
- Single crystal silicon facesheet typically used to diffuse thermal gradients
- Near IR and IR wavelengths require greater actuator stroke

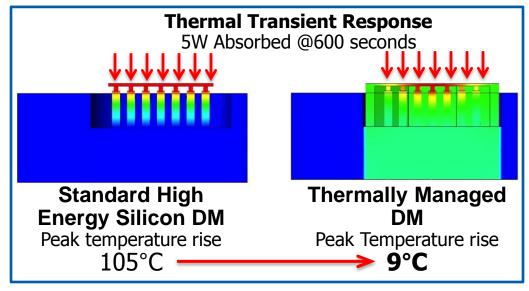

Advanced deformable mirrors enable propagation of lasers through the atmosphere for directed energy & laser comm.

### AOX High Energy Laser (HEL) SPA Deformable Mirrors New Developments in DMs for Directed Energy

- HEL SPA deformable mirrors combine woofer & tweeter functionality
  - Low spatial frequency excursion up to 81  $\mu m$  PV
  - High spatial frequency correction with 285 to 420 actuators at 5mm spacing
  - Closed loop surface figure <15 nm rms</li>
- Customizable VLA Optical Coating
  - Stress Balanced Coating Process Eliminates Coating Stress Effects on Mirror Figure
- <2°C temperature rise under 5 kW/cm2 for 30s</li>
- Adaptive mirrors suitable for extreme thermal environments since thermal errors are highly correctable by the actuators
- Mirrors fabricated with 7.5cm x 7.5cm clear apertures combined with piston/tip/tilt IWC functionality
- Performance under HEL thermal loading to be validated later this year



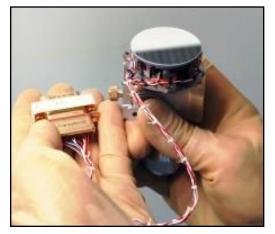

ΔΟΧ



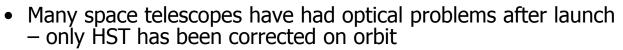



### AOX Thermally Managed Deformable Mirrors New Developments in DMs for High Thermal Loads

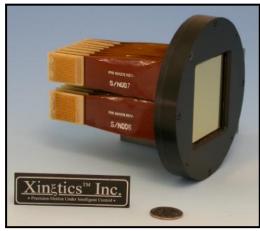
- Thermally managed deformable mirrors allow for steady state thermal loading
- Standard high energy silicon deformable mirrors have insufficient thermal mass in the facesheet to handle extreme flux loading over very long runtimes
- Thermally managed DMs can reduce steady state temperature rise by order of magnitude compared to standard high energy silicon DMs
- Thermal management can be either fully passive, or simple indirect cooling can be implemented to further enhance performance



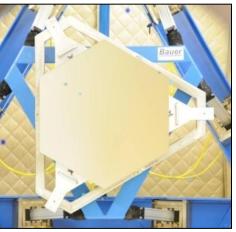




## **Deformable Mirrors for Space Imaging Systems**




The Hubble Space Telescope Circa 1991




Articulating Fold Mirror WF/PC II Precision alignment



- "Control loop" closed by astronaut servicing
- Active Optics: Mirrors that can be reshaped after launch; and the Wavefront Sensing and Control system to command them
  - Reduce mission risk
    - Correct any optical problem that might arise
    - Enable testing to spec during system assembly and integration
  - Reduce mission cost
    - Reduce mission mass
    - Relax fabrication and assembly tolerances
    - Speed up Integration and Test phase



Modular Deformable Mirrors Coronagraph imaging



ORTHROP GRUMMAN

ΑΟΧ

Lumens Hybrid Deformable Mirror Lightweight segmented primary mirrors

### AOX High Density Module Deformable Mirrors New Developments in DMs for High Contrast Imaging



- 1.0mm spacing modular deformable mirrors provide extreme spatial frequency correction & angstrom level control
  - 1.0mm actuator modules with 0.5 µm stroke available in 32x32 and 48x48 arrays
  - Scaling to mirrors with 4096 channels and greater achieved by bonding multiple modules together into larger arrays
  - Mirror surface polished to  $\lambda$ /100 rms
  - Surface figure (open loop) stable to 0.01nm rms for long durations (> month) with 100% actuator functionality
- AOX module DMs have enabled 10<sup>-9</sup> contrast imaging for future planet finding missions
- Module mirror technology at TRL-6 based on successful protoflight random vibration testing performed by JPL last year
- PMN technology space heritage at TRL-9 on Hubble WF/PC-2



JPL's High Contrast Imaging Testbed




Random vibration testing in 3 axes

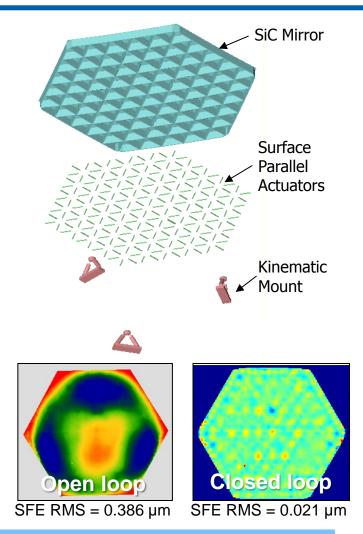


1024 Channel DM 32X32 module



2304 Channel DM 48X48 module




4096 Channel DM 2x2 Array of 32x32 Modules

Approved for public release, distribution unlimited. Northrop Grumman Case 13-1896 dated 9/26/13



# Active Hybrid Mirror (AHM) for Large Apertures ... Ultra-lightweight mirrors for large space apertures

- Lightweight SiC substrates
  - SiC provides high stiffness and dimensional stability
  - Remarkably low areal densities 10-12 kg/m<sup>2</sup>
  - Apertures up to 1.35m demonstrated, scalable to 2m
- Surface Parallel Actuation
  - Discrete PMN actuators integrated into SiC rib structure
  - Surface parallel actuation eliminates need for reaction structure
  - Mirrors with up to 342 actuators demonstrated
- Optical Surface
  - Nanolaminate optical replication enables production on 6 week centers
  - Direct optical polishing enables better optical figure and finish suitable for UV applications
- Hybrid mirrors suitable for active primary, secondary, or large grazing incidence mirrors
- Replicated hybrid mirror technology compatible with SiC, graphite epoxy and glass substrates
- Active hybrid mirrors can correct for gravity, thermal errors and other system errors allowing for relaxed tolerances
- Technology demonstrated to TRL-6



## Rapid production fabrication and low area density of Active Hybrid Mirrors address the needs of future large segmented apertures

#### Global Control Actuators positioned in the major rib structure Actuator influence function extends over the entire optical surface for large amplitude low spatial frequency correction – 40µm PV excursion

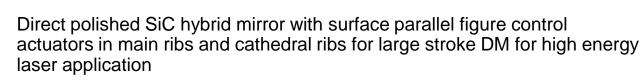
- Fine Control Actuators positioned in the short, cathedral rib structure
  - Actuator influence only over local zone for high spatial frequency correction
- Direct polished SiC achieves exceptional closed loop optical performance with relaxed optical polishing tolerances reducing cost and schedule
- SiC active hybrid mirrors offer exceptional performance for application with high thermal loads
- Active SiC hybird mirrors suitable for active secondary mirror applications

Tweeter

Actuators

Woofer Actuators

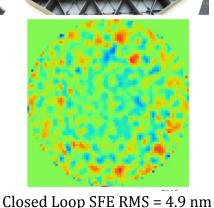
15


Approved for public release, distribution unlimited. Northrop Grumman Case 13-1896 dated 9/26/13

Woofer Actuator

Influence Function

Tweeter Actuator

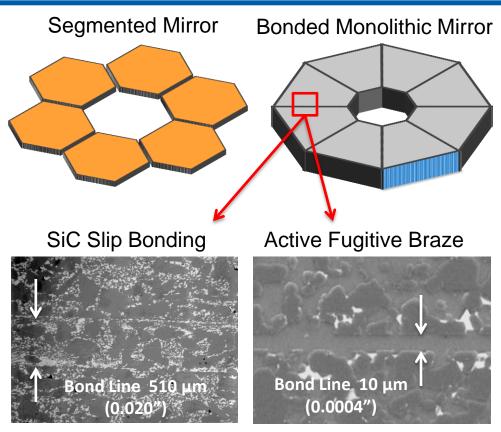

Influence Function



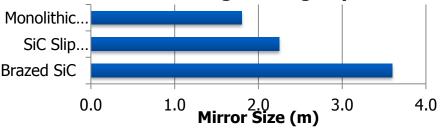
AOX Woofer/Tweeter SiC Active Hybrid Mirrors

New Developments in Lightweight DMs for larger apertures








#### Scaling SiC Mirrors for Large Apertures Segmented vs Bonded Monolith Mirrors

- AOX SiC manufacturing capability limited to 1.8-2.0m based on size of current infrastructure
- Large apertures with segmented mirrors
  - Segmented mirrors enable scaling to much larger apertures than monolithic mirrors with existing production capabilities by increasing the number of segments
  - Have to deal with phasing segments
- Large bonded monolithic mirrors
  - SiC parts can be joined together to form larger monolithic substrates reducing cost and risk of scaling infrastructure
  - Leverages SiC strength, stiffness and production manufacturability to enable ultra-lightweight substrates
  - Large 1 2m SiC substrates to be joined using either established brazing or SiC slip bonding techniques
- SiC Slip Bonding
  - Parts bonded with SiC slip in prefired state before final firing
  - Bonded substrate is polishable across bond joint
  - SiC bonding can be scaled to ~2m using existing furnaces
- Brazing SiC
  - Brazing occurs at a lower temperature than final SiC firing
  - Active fugitive braze materials enable multi-step braze assembly
  - Large braze ovens much less expensive to scale than large high temp SiC furnaces









### Summary

- Merging of AOA and Xinetics into AOX brings together decades of wavefront sensing and control expertise with decades of deformable mirror leadership
- AOX has delivered over 300 DM systems
- AOX DMs are operational in applications from Directed Energy to Astronomy for over 18 years
- AOX continues to develop new DM technologies to address various needs such as:
  - Higher bandwidth
  - More stroke
  - More actuators
  - Smaller spacing
  - Increased performance with reduced size, weight and power
- AOX continues to raise the TRL of DMs

AOX inventing and maturing active optics technology to enable a new generation of high-performance optical systems

