

Growing a NASA Sponsored Metrology Project to Serve Many Applications and Industries

James Millerd President, 4D Technology

HNOLOG

- In the Beginning...
 Early Technology
 The NASA Connection
 - NASA Programs
 - First success at NASA
 - Technology Evolution
- Where We Are Today…
 - New Applications and Industries

Optical Interferometry

Measure interference between optical beams traveling two different paths

Thin Film Interference

White Light Interference in a Bubble

Temporal Phase-Shift Interferometry

Polarization Phase Shift Method

Use polarizer as phase shifter

Circular polarized beams (θ) + linear polarizer (α) \implies I = I_T(1+ γ Cos (θ + 2 α))

Phase-shift depends on polarizer angle

Kothiyal and Delsile, (1985)

4DTechnology Corporation

Early Technology

Image division + bulk polarization elements

- Single Frame Acquisition
- Simplified Optical Setup

The NASA Connection

The NASA Connection

NASA Related Projects

Cryo-figuring of mirror segments

• 1) Polish

First application

NASA Marshall - XRCF

+						
	Peak to Valley			RMS		
	Uncalibrated	Precision	Repeatability	Uncalibrated	Precision	Repeatability
	Accuracy			Accuracy		
	.087 wys	.021 wys	.0029wvs	.011 wys	.0024 <u>wys</u>	.00058 <u>wxs</u>
	λ/11.5	λ/46	λ/348	λ/90	λ/413	λ/1711
	57 nm	13.8 nm	1.8 nm	7 nm	1.5 nm	0.36 nm

Ball Aerospace – Deep Impact

Figure testing of 300 mm Zerodur mirrors at cryogenic temperatures, Baer & Lotz, SPIE 4822-4 July 2002

Mirror Segment Discontinuity

http://www.jwst.nasa.gov/

 $\lambda_{s} = \frac{\lambda_{1} \cdot \lambda_{2}}{|\lambda_{2} - \lambda_{1}|}$

Dynamic Phase-shift with Micropolarizer Array

- Array of oriented micropolarizers
- Similar to RGB color mask

- All data is gathered in a single camera frame
- Allows common path optical arrangement (no tilted beams)
- Works with broadband source (*multi-\lambda, or white light*)

Remote Cavity Application

JWST Secondary Mirror Test Configuration 80cm diameter hyperboloid surface

"Cryogenic optical testing results of JWST aspheric test plate lens" Koby Z. Smith, Timothy C. Towell, Proc. of SPIE Vol. 8126 812600-7 4DTechnol

4DTechnology Corporation

PhaseCam - ESPI

Measurement of nm displacement of diffuse objects at 10's meters standoff

 Peter Blake, et. al., "Spatially phase-shifted digital speckle pattern interferometry (SPS-DSPI) and cryogenic structures: recent improvements", Proceedings of SPIE Vol. 7063 2008

Other Applications and Industries

4D Technology

2014 - 40 employees

4D instruments measure surface, wavefront, and polarization, enabling our customers to:

- > Build next generation optical instruments
 - Space-based optical systems
 - Large astronomical telescopes
- Improve manufacturing of industrial and consumer products
 - Semiconductors, displays, data storage
 - Flexible electronics
- > Increase fundamental understanding
 - Bio-medical research
 - Astronomy

International Sales, Service and Support

Semiconductor and MEMS

- 193nm
- Photolithography
 - Wafer chucks

Digital micro-mirror device

FizCam – Data Storage

•Disk drive excited at 400Hz

·11/19/2014

NanoCam

NanoCam

- > 3D Optical surface roughness critical for large optics
- Micro-scope based system
- > Dynamic Measurement operation anywhere

In-situ polishing process control (On-tool)

Courtesy of Zeeko Ltd

On-optic measurement

Courtesy Optical Surface Technologies

BioCam Quantitative Biological Imaging

•Rat cardiac myocytes – before & after medication

•Both frequency and strength are measured

PhaseCam - Ophthalmic

- Cornea measurement
- Tear film dynamics
- Optics

PolarCam

Micropolarizer Camera

- Enables whole-field, Dynamic polarimetry
 - > Wide variety of wavelengths and sensor formats
- Passive illumination
 - > Target discrimination, Image enhancement

Rock surface at a depth of 6 feet

Reference Camera

Enhanced with DoLP

PolarCam – Active Illumination

- Real-time, quantitative, independent of orientation
- Product inspection (e.g. containers, packaging, eye wear)
- 25mm diameter window: 0 70 nm birefringence

4D and NASA

NASA sponsored development has lead to:

- New Technology
- Sustained Job Creation
- Better Metrology for Telescopes
- Industrial Process Improvement
- Fundamental Science

Courtesy of Ball Aerospace

http://www.jwst.nasa.gov/

Courtesy of Zeeko Ltd.

Thank you!