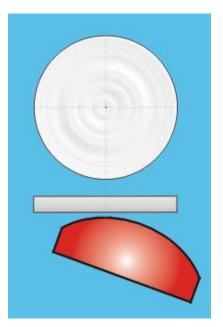
NASA SBIR Success Story:-Active Edge-Control in Polishing of Mirror Segments and Other Applications

David D. Walker

Research Director, Zeeko Ltd Professor of Optics, Glyndŵr University, N. Wales Professorial Research Associate, University College London

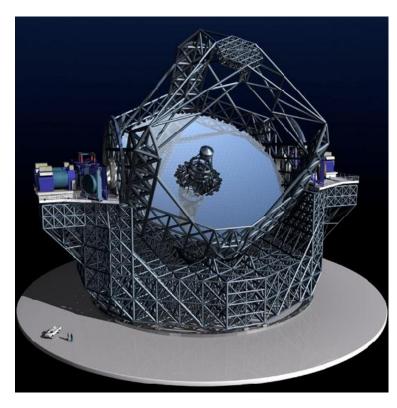
This talk

- Starting-point NASA SBIR grant
- E-ELT and prototype segments
- Another application of edge-control
- Acknowledgements



NASA SBIR grant

- "Edge Control in Large Segmented Optics Using Zeeko Polishing Technology", Proposal S4.04-9574
- Demonstrated the basic method
 - Compressible spherical bonnet
 - Rotated and axis precessed
 - Tool compressed against the part
 - Delivers variable spot-size



The 39.3m aperture European Extremely Large Telescope

Segmented primary mirror

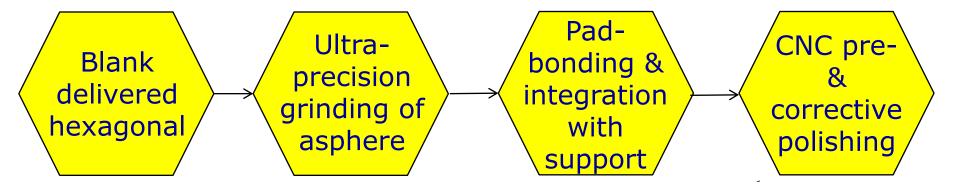
- 798 hexagonal segments +133 spares
- Each 1.4m a/corners
- Irregular hexagons
- 50mm thick
- ~ 200 microns max asphericity

Prototype segments near edge of primary. Reflect the earlier 42m telescope design with 84m ROC segments.

Segment production-rate & quality

- Construction schedule:- 2-3 segments per week
- Segment warping harness in the telescope will remove most of the low-order aberrations

ESO specification (abridged!)	Average	Maximum
RMS surface form (excluding 10mm edge-zone)	25nm	50 nm
RMS surface form (ESO Zernike allowances removed)	7.5nm	15nm
PVq (95%) edge mis-figure (surface) in edge-zone	100nm	200nm


 RMS surface form *includes* errors in *matching* segment base-radii and conic-constants

Process-chain and metrology

National Facility for Ultra Precision Surfaces Hosted by OpTIC in North Wales Operated by Glyndŵr University

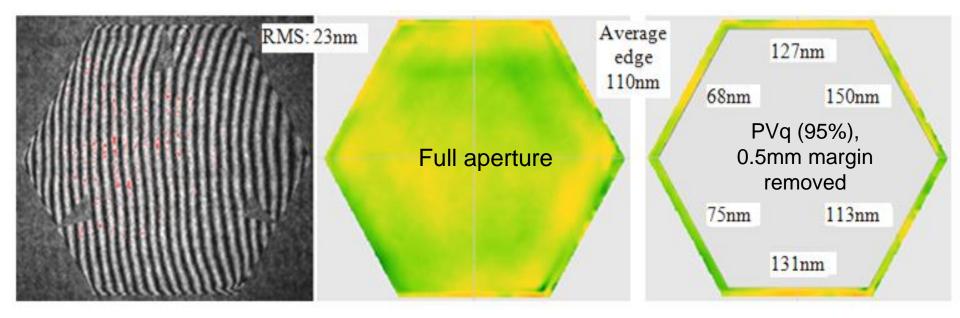
Zeeko IRP1600 under test-tower On-axis optical test On-machine deployment of pentaprism profilometer

PRIFYSGOL GLYNDŴR WRECSAN GLYNDŴR UNIVERSITY WREXHAN

glyndŵr

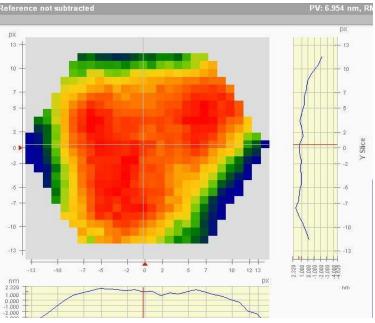
Edge-polishing strategy

- 1. CNC-grind the off-axis asphere
- 2. Apply 0.5mm of the final 1mm bevel
- 3. Bonnet polishing programmed to leave turned-up edge at every stage
- 4. Up-turn progressively narrowed and lowered
- 5. Hard pitch tool to remove residual up-stand
- 6. Final 0.5mm bevel applied at end

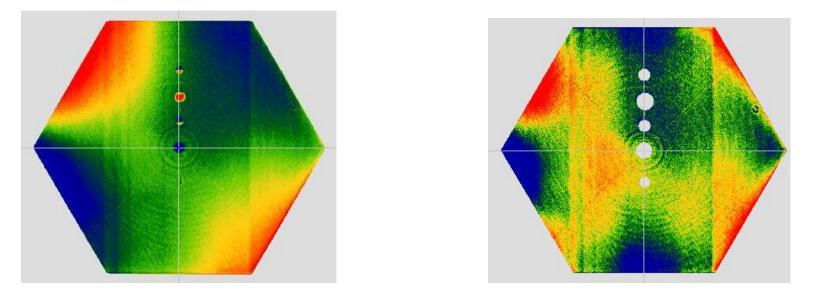


Repeated edge-trials on 400mm borosilicate spherical parts

In 10mm wide edge zone (to start of bevel):-110nm PVq surface edge-misfigure (average over 6 edges)


- Cranfield University BoX[™] m/c
- Built by Cranfield Precision Ltd
 - 6.5µm PV measured on grinding platen (Cranfield Univ. CMM)
 - ~ 150nm mid-spatials

Grinding 1st aspheric segment SPN01 (Zerodur)



CMM data on 50mm grid, by courtesy Cranfield University

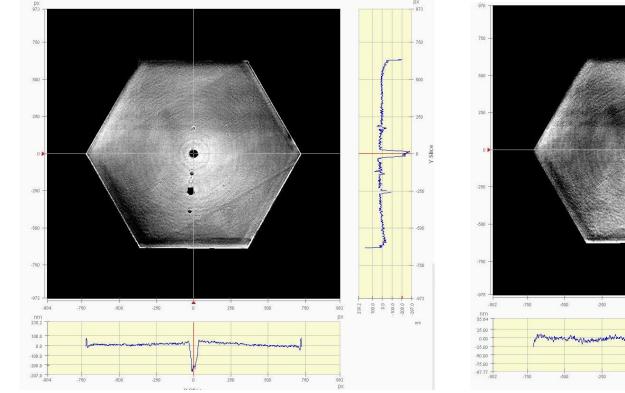
Zeeko polishing SPN01

 Used extensively for equipment / process / metrology / software de-bugging and qualification

- SPN01 then held, due to Test Tower thermal issues
- Now rectified:- stable to ~ +/- 0.25 degs C

BoX grinding SPN04 Corning ULE

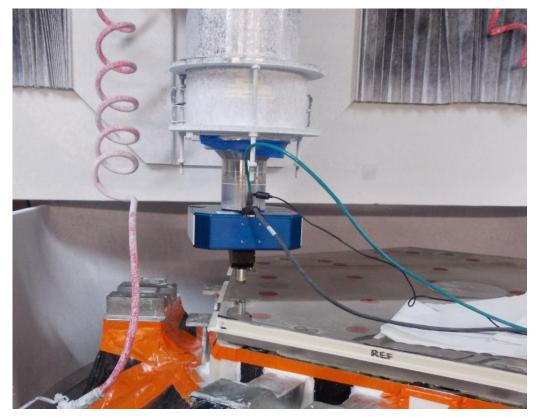
- Again, mounted on diamond-turned platen
- After grinding, ~ 2µm "flash pre-polish"
 - Measured on 27 point hydrostatic support
 - Grinding form-error > 40 µm PV (4X expected)
 - grinding support ?
 - springing due to "Twyman effect" ?
- Needed to remove > 60µm DC material in polishing and retain quality of edges.



SPN04 under acceptance ... this week!

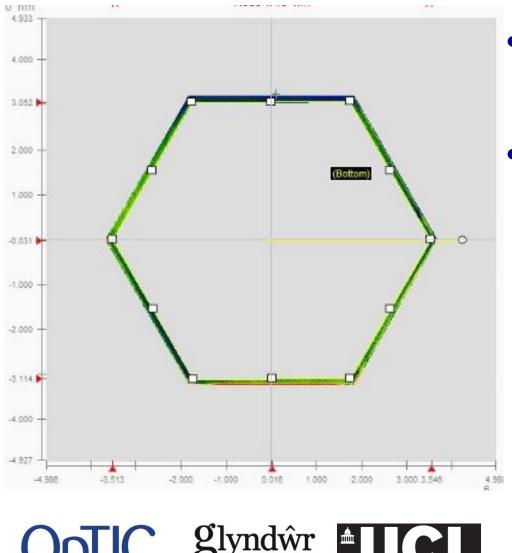
and my man

Full Aperture to edge Only tip/tilt removed 22.9nm RMS Surface 10mm edge zone cropped ESO low-order allowances removed CGH artifacts masked 10.3nm RMS Surface


ZEEK®

OpTIC

3D Surface-texture measurement



- 4D Technologies STA1 white-light interferometer
- Mounted in Zeeko machine tool-holder
- Automated for multiple sample-areas
- SPN04 uniform texture ~1nm Sq

Edge result on SPN04

- Final 0.5mm of bevel still to be applied
- Phase-map cropped
 - Leaving 10mm wide edge-zone
 - Edges turned up
 - Average mis-figure over six edges is:-

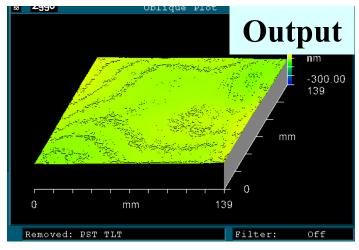
172nm PVq (95%) surface

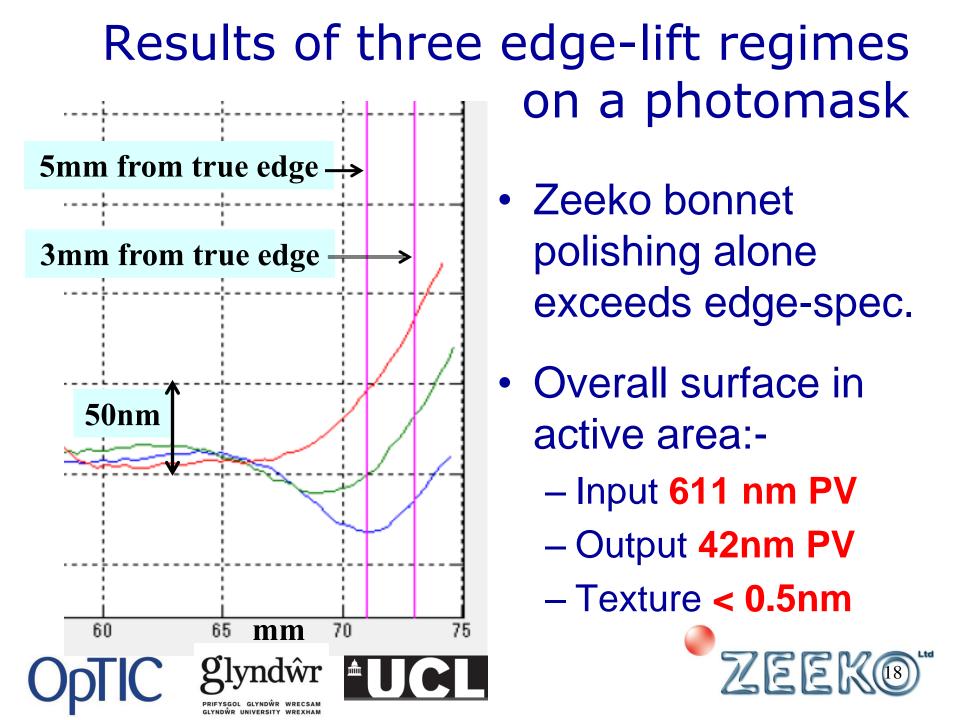
EUV photolithography photomasks

- Photomasks
 - Fused silica window + chrome pattern
 - One photomask needed for each layer in a wafer
- Next-generation EUV photomasks:-
 - 30-100nm PV form error
 - Edge dead-zone < 5mm wide</p>
- With standard CMP on square blanks tough!

Photomasks

Photomask on Zeeko IRP200 machine




B **2990** Oblique Plot Input mm -300.00 143 mm 143 Removed: PST TLT Filter: Off

Corrective polishing within active area

PRIFYSGOL GLYNDŴR WRECSA Glyndŵr University Wrexha

Conclusions

- An end-to-end process chain
 - Part at final shape and size throughout
 - Well-suited to automated production-line
 - Edge control well understood
 - Applicable to various sectors …from segmented telescopes to photomasks!
- Next finish SPN01
- Then polish SPN03 (has been BoX-ground)

Thank you!

Acknowledgements

- NASA SBIR grant proposal No. S4.04-9574
- ESO: segment prototype contract
- Substantial financial support from:-
 - Glyndŵr University
 - UK-EPSRC and STFC
 - Welsh Government:
- Zeeko Ltd: Build of IRP1600 machine and tech. support
- Cranfield University and Cranfield Precision Ltd: development of BoX grinder

