

High Performance Computing (HPC)-Accelerated Inverse Deflectometry for Mirror Segment Metrology – Update

Presentation to

NASA Mirror Tech / SBIR / STTR Workshop 2016

Contributors	
Prime Contractor (SBIR) SURVICE Engineering	Subcontractor UNC Charlotte / Ctr for Precision Metrology
Dr. John F. Ebersole, Principal Investigator	Dr. Angela Davies, Principal Investigator
Dr. Christiaan Gribble	Trent Vann
Dr. Shawn Recker	Dr. Chris Evans
Robert Baltrusch	Dr. Joseph Owen
Mark Butkiewicz	
Dr. Joseph Rosenthal	

NASA GSFC Tech Rep: Dr. Raymond G. Ohl 2 NOV 2016

M-TEC[™] : *Inverse* Deflectometry + HPC

- Instead of using *deflectometry* to determine the optical prescription (shape) of a telescope mirror
- We have been developing *inverse* deflectometry
- We start by assuming we already know the actual optical prescription of the telescope mirror
 - Then use deflectometry to determine 6 DOF misalignment of mirror segments in the telescope
 - And accelerate the process with *high performance computing* (HPC) to rapidly determine misaligned 6 DOF condition
- Our name for this new metrology technology is *M*-TEC[™]

M-TEC[™] Permits Direct (Front-Viewing) Determination of Segment Alignment

- Allows front-viewing, *in situ* testing of segment alignment
 - Non-contact
 - At safe distance (greater than one meter)
 - Multi-segmented telescopes and optics
- Versus metrology tech mounted onto reverse

M-TEC[™] Development & Validation Process

Inverse Deflectometry = New Twist on Prior Art

(Phase Measuring Inverse Deflectometry, or PMID)

Leverages prior work in deflectometry; for example

- PMD (Phase Measuring Deflectometry) work by Knauer *et al.*, SPIE Proc. 5457, 366 -376 (2004)
- SCOTS (Software Configurable Optical Test System) work by Su *et al.*, Appl. Opt. 49, 4404 4412 (2010)

Diamond-turned off-axis parabolic mirrors

Optical Bench Tests

Optical Layout

Sinusoidal Fringes on Screen Seen Via Mirrors

Zernike Analytic Methodology

- Goal: 6 DOF misalignment Range: ±2 mm & ±2 mrad Sensitivity: 100 µm & 100 µrad (JWST 1.6 m segment scale)
- Low-order Zernike fit
- Track Zernike coefficients with misalignment
- Simulate with FRED

Simulated Camera Image

Individual Segment

Linear Behavior Observed e.g., X Translation Misalignment

Sensitivity Factors Vertical Fringes

Taylor series expansion of Zernikes vs misalignment:

Experiment or

SUR/ICE ENGINEERING COMPANY

SURVICE Engineering Company

www.survice.com

Nationwide 350+ employee specialty engineering consulting and design firm, serving the US Department of Defense for over 30 years.

- Recognized expert in visualization and high performance computing
 - Only small business with NVIDIA CUDA Research Center accreditation
- Recognized leader in metrology and reverse engineering services (metrology.survice.com)
- Dozens of highly competitive Small Business Innovation Research (SBIR) awards

SmartCEO Magazine *Voltage Award* for Technology Innovation

SURVICE Engineering CR&D HPC and Metrology Devices & Tech

M-TEC™

NASA SBIR to develop HPC metrology tech, like James Webb Space Telescope

Hoverbike

DSIAC task with US Army & Malloy Aeronautics Ltd.

New RF propagation model built for Intel to showcase Xeon Phi

Enhanced-CLR™

Completed MRL-7 demo on **F-35** production line in Palmdale CA.

HOLOS™

Working with Intelligent Earth Ltd. on low-cost touchprobe metrology tech

VSL (Visual Sim Lab)

High performance V/L analyses to be part of next AJEM release.

Apollo™

CFD running NVIDIA's CUDA on GPU

P&W (Pratt & Whitney) FAST //

Custom H/W & S/W solution for **F-22** engine exhaust duct data collection

Subcontractor: UNC Charlotte Center for Precision Metrology (CPM)

- <u>Research</u>: Development and integration of precision metrology as applied to manufacturing
- Facilities:
 - 4,000 sq. ft. of controlled environment for metrology and instrument development
 - 1,500 sq. ft. controlled environment, 20± 0.1° C, class 10,000 metrology laboratory
 - 33,000 sq. ft. laboratories & offices Duke Centennial Hall
- Extensive capabilities
 - Metrology
 - Precision manufacturing
- <u>CPM Affiliates</u>: B&W Y-12, Zeiss, Caterpillar, Corning Cable, Cummins, GE Energy, General Dynamics, Intel, LLNL, Micro Encoder, NIST, Renishaw, United Technologies

14

~ Recap ~

High Performance Computing (HPC)-Accelerated Inverse Deflectometry for Mirror Segment Metrology – Update

