

ManTech International Corporation .

Leading the Convergence of National Security and Technology⁵⁴⁴

ManTech SRS Technologies, Inc.

Initial Development of Deformable Membrane Mirror to correct Large Amplitude Aberrations

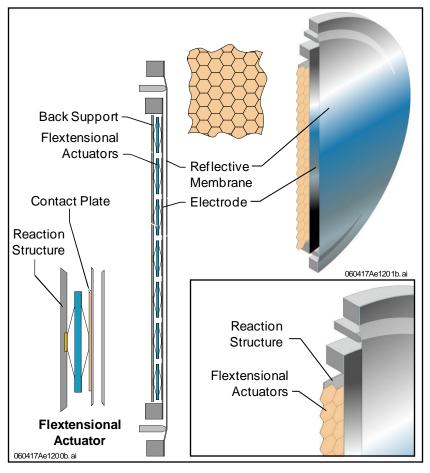
Presented by Brian Patrick, MSRS

Technology Days 2007

Secure Systems and Infrastructure Solutions

Information Technology Solutions

Systems Engineering Solutions


- Membrane Mirror with Flextensional Actuators Concept
- Initial Deformable Mirror Modeling

 Actuator layout optimization, capability prediction
- Facesheet Material Optimization
- Initial Test Setup/Model Correlation
- Near Term Activities

Background

Hybrid DMM Concept

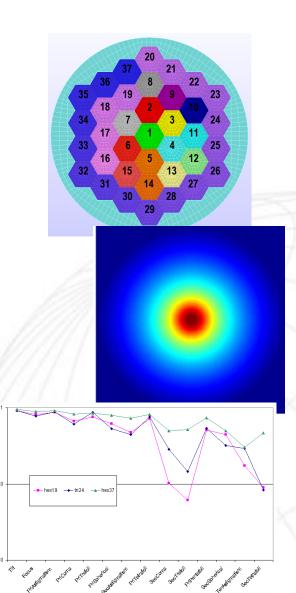
Combines TRS Technologies' flextensional actuators with SRS Technologies' Membrane Mirror Technology

Significance:

- Correction for low order aberrations with large magnitude
- Large aperture capable
- Light weight
- Broad temperature range
- Low voltage

Approach:

Conduct FEM to optimize the shape control and performance of a 0.25 m mirror with various configurations. Parameters include electrode positioning, stress state, mechanical properties of material, mounting positions, driving conditions, etc.

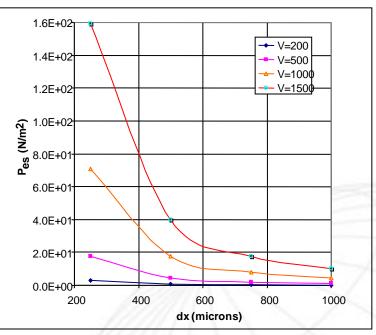

FEA Modeling

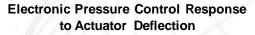
Objective:

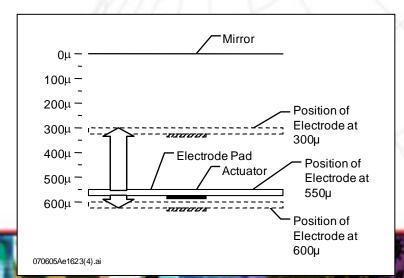
To optimize deformable membrane design by selecting electrode shape, configuration, density that will maximize the correctability of the DM within the constraints of the program

Approach:

- Model DM with hexagonal and triangular electrode pads.
- Simulate actuators by applying displacements to the electrodes based on theoretical data for film displacement range.
- Perform studies with either 1 or 3 actuators on each electrode pad.




Analysis Method


- Simulated actuation by applying pressure to electrode pad
 - Max deflection at 1500V is 300microns
- Set initial electrode pad position at distance of 550µ away from DM

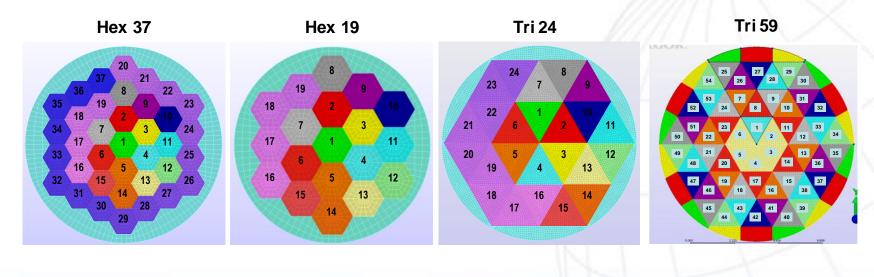
Man lech International Corporation

- Electrostatic pressure at 550µ is 30N/m² which was applied to entire mirror surface to create reference shape
- Influence functions were created by energizing each electrode pad individually
 - 36N/m² pressure was applied to energized electrodes (Pressure was chosen as 20% higher than reference pressure)
- Membrane pre-stress was simulated by applying a negative thermal load to entire membrane
 - Used initial membrane pre-stress of 2582psi (based on previous experience)

FEA Cases

 Created and analyzed 6 different cases with varying electrode geometry, membrane pre-stress, and electrode pressure load

Man Tech


 Determined influence functions for each actuated electrode pad

Odricht i EA models						
Electrode Geometry	Electrode Number	Film Stress (psi)	Pressure Load on Actuated Electrode ‡			
Hexagonal	19	2580	1x			
Triangular	24	2580	1x			
Hexagonal	19	1000	1x			
Hexagonal	19	2580	7x			
Hexagonal	37	2580	1x			
Triangular	59	2580	1x			
	Geometry Hexagonal Triangular Hexagonal Hexagonal Hexagonal	GeometryNumberHexagonal19Triangular24Hexagonal19Hexagonal19Hexagonal37	Electrode GeometryElectrode NumberStress (psi)Hexagonal192580Triangular242580Hexagonal191000Hexagonal192580Hexagonal192580Hexagonal192580Hexagonal192580			

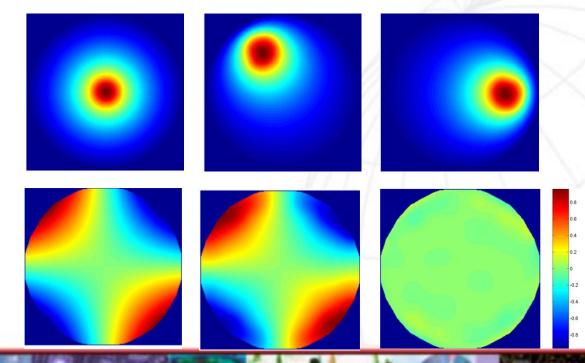
070605Ae1623(6).ppt

Current FFA Models

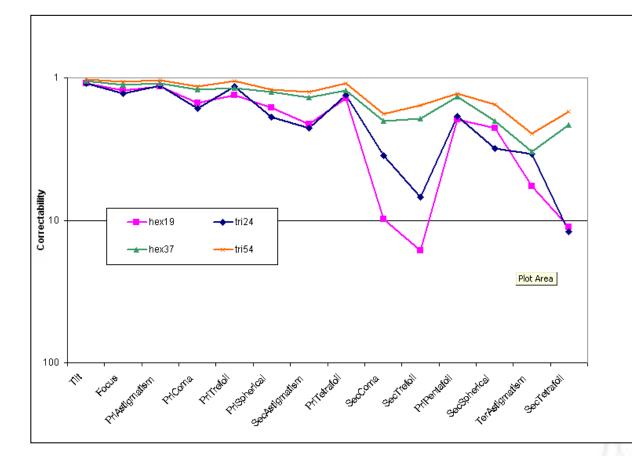
‡ 1x Load = 0.052psi, 7x Load = 0.104psi

Correctability Study

Theoretical correction is calculated using the influence functions from the FEM


$$Correctability = \frac{\sigma_{starting}}{\sigma_{starting} - \sigma_{residual}}$$

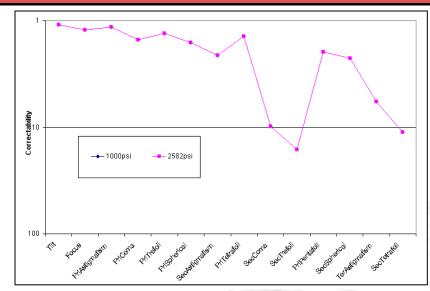
 $\sigma_{starting} = \text{RMS}$ of the starting error


 $\sigma_{residual}$ = RMS of the residual error after correction has been applied

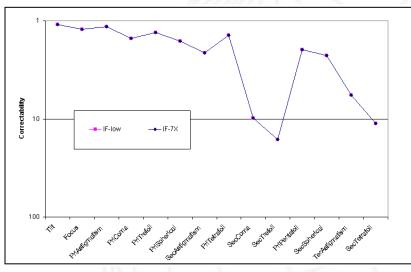
Examples of influence functions from Hex37 case.

Example calculated starting error, actuator induced error, residual error after correction.

Design Analysis


- Compared correctability
 results for four designs
 - 19 Hexagonal cells, 24 triangular cells, 37 hexagonal cells, 54 triangular cells.
- Hex37 performs better than other designs
- Tri24 performs better overall than Hex19

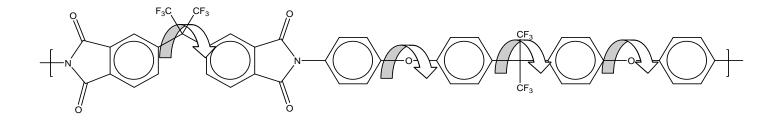
Design Analysis


Linearity Study Varied film pre-stress and magnitude of activated electrode in Hex19 case to determine linearity of correctability study

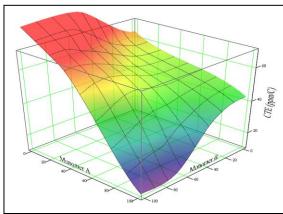
Man Tech

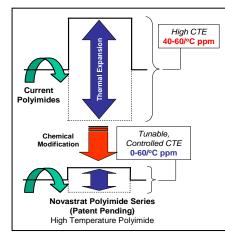
- Case 1 –Actuated electrode pressure set at seven times the initial magnitude
- Case 2 Varied membrane pre-stress (1000psi and 2582psi)
- In both cases the shape of the influence functions varies slightly; Correctability results are virtually the same
- Study shows that the influence functions can be considered linear for the purpose of comparing potential designs
 - Issue will be further explored when developing control algorithm

Case 1 – Varied Membrane Pre-stress



Case 2 – Varied Actuated Electrode Magnitude




LOW CTE Polymer Face Sheet

Typical polyimides contain flexible bonds resulting in a high (50 ppm/°C range) CTE value.

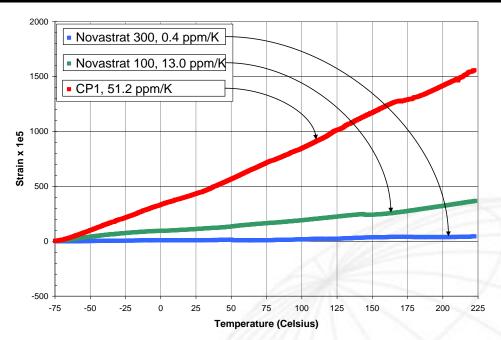
Observed CTE as a function of rigid monomer incorporation.

Crankshaft Mobility Model of thermal expansion.

Goal: membrane with CTE < 20 ppm/°C

Approach:

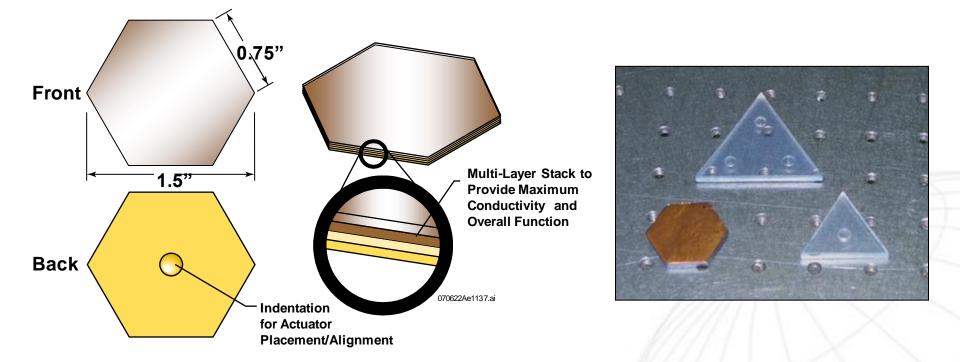
Modification of polymer at molecular level to reduce thermal-induced dimensional instability.


Material	Description	CTE (ppm/ºC)	Temp. Stability	Modulus	Wrinkle Resist.	UV Resist.	AO Resist.
CP1-DE	Optical-quality CP1 Polyimide	Moderate: 60	Excellent > 300 °C	Moderate 315 ksi	Moderate	Good: Space Rated	Poor
Novastrat Series	A series of low CTE polyimides designed to match substrate CTEs	Controlled: -12 to 40	Excellent > 300 °C	High 500-1500 ksi	Moderate	Good	Poor
CTP Series	Polyimides toughened to produce good tear and impact resistance	High: >100	Moderate >150 °C	Controlled Low 30-100 ksi	Good	Good	Moderate
EP Series	Polyimides modified to exhibit rubbery behavior	High: >100	Excellent >280 °C	Controlled Low 1-50 ksi	Excellent	Good	Moderate
Polymeric M	odification: The above pol	ymer classes	can be designed	ed with the followi	ng inherent p	roperties.	
CORIN	Polyimide with enhanced AO resistance	Controlled 4 to >100	Controlled	Controlled	Controlled	Good	Excellent
MANTIN	Polyimides with enhanced electrical conductivity	Controlled 4 to >100	Controlled	Controlled	Controlled	Good	Controlled

ManTech International Corporation. Novastrat Dimensionally Stable Polyimides

Novastrat History and Overview

- The Novastrat series is a polymer family with controlled CTE.
- Novastrat was designed for interlayer dielectrics, and exhibit good adhesion to silicon substrates.
- All Novastrats are high temperature polyimide materials.
- Novastrat 300 was designed to exhibit near-zero CTE at mils thickness.
- Currently fabricated in 2' x 2' panels.
- Readily scalable to 6' x 6' panels or larger.


	Novastrat	Novastrat	Kapton	
Property*	300	100	HN	CP1
In Plane CTE (ppm/°C)	0.4	13.0	20.0	51.2
Tg (°C)	>300	>300	>300	263
Tensile Strength (ksi)	23.8	30.1	33.5	14.5
Tensile Strength (MPa)	164	208	231	100
Youngs Modulus (ksi)	600	880	370	315
Youngs Modulus (GPa)	4.1	6.0	2.6	2.2
Solvent Resistance	Excellent	Excellent	Excellent	Poor
Color	Yellow	Yellow	Orange	Slight Yellow
Dielectric Constant (10 GHz)	3.1**	3.0**	3.4	2.5

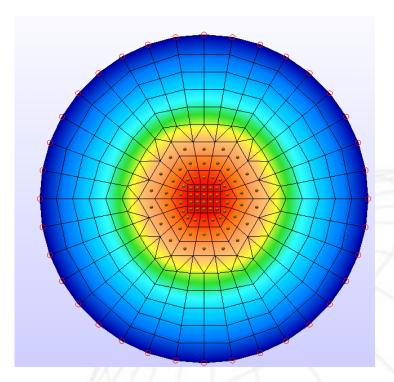
* All properties measured at 23 $^{\circ}$ C

** Estimates from circuitry tests.

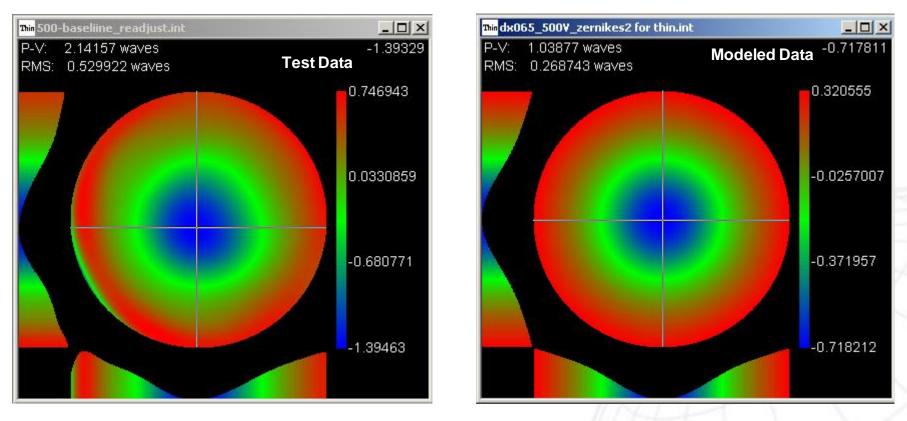
Electrode Assembly

- Electrode pad consists of a conductive layer with a polymer overcoat.
- Custom adhesive used to affix stack to the substrate base.
- Substrate base is nonconductive material.
- Setup and testing currently underway.

Initial Testing of Electrostatic Control



- Initial test setup using 10cm diameter membrane mirror complete
- Test data will be used for FEM correlation
- Initial data taken for single hexagonal electrode with one TRS flextensional actuator
- Triangular electrode testing in process
- Seven electrode setup currently being fabricated



- Created FEA model to simulate test setup with 10cm diameter CP1 film and single hexagonal electrode
- Distance between film and electrode = 1.65mm
- Electrode set at 500V
- 2500psi film prestress

FEA model

FEM Comparison to Test Data

- Test and modeled data differ by half in magnitude
- Further testing will allow for adjustments in model to provide better results (main variable is film prestress)
- Initial testing will measure only small amplitude actuation due to interferometer limitations with current setup. Shack-Hartmann sensor will be used for testing after further development.

- Additional single actuator testing and model correlation
- Include 3 actuators on each electrode in model to allow for tip/tilt capabilities
 - Determine improvement on final mirror shape
- Incorporate low CTE facesheet material into design
- Finalize actuator layout design and correlate model to test data
- Begin initial control algorithm development

