

Metal Matrix Composite Optics and Structures

P. Karandikar, M. Watkins, B. Givens, M. Roberts, M. Aghajanian M Cubed Technologies, Inc. (A II-VI Company) 1 Tralee Industrial Park Newark, DE 19711

Bill Morgan II-VI Optical Systems

-V M CUBED

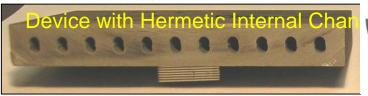
<u>Outline</u>

- M Cubed company background and materials technologies
 - Metal Matrix Composites (MMCs) and Reaction Bonded Ceramics
- Material Selection MMCs Vs. Ceramics
 - Comparison of specific properties
 - Advantages of MMCs
- Product Example: Optics and Structures
- Ni-plating development
- Microstructural uniformity
- Thin Ni-plated and preliminary diamond turned MMC optic
- Thick Ni plated components for
 - Diamond turning and
 - Thermal characterization
- Summary

M Cubed Background

• M Cubed

M CUBED

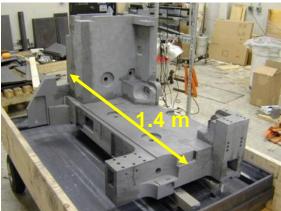

- ~200 Employees
- Three locations: Newark, DE; Monroe, CT; Newtown, CT
- Small company until October, 2012
- Acquired by II-VI Incorporated in November, 2012
 - II-VI is a conglomerate of advanced materials companies
 - Over 6000 employees world wide
 - OS (EEO + Lightworks Optics) now a sister company
 - Added capabilities of optics system design, finishing, assembly
- Current Materials/Products/Markets
 - Metal matrix composites, reaction bonded ceramics (SiC, B₄C,...)
 - Semiconductor capital equipment components
 - LCD capital equipment components
 - Wear and thermal management components
 - Armor

M Cubed Materials Classes

- Metal Matrix Composites MMC (Investment cast or Gravity cast): "Super Aluminum"
 - Properties are metal-like but with higher stiffness, hardness, fatigue resistance and damping capability
 - Al/SiCp, Al/Al₂O₃p; 30% and 55% loading
 - 2.1 m x 2.1 m components routinely produced
 - Machine like metals with diamond tooling, can drill and tap
 - Can anodize, electroless Ni plate (excellent CTE match)
- Reaction Bonded (RB) Ceramics

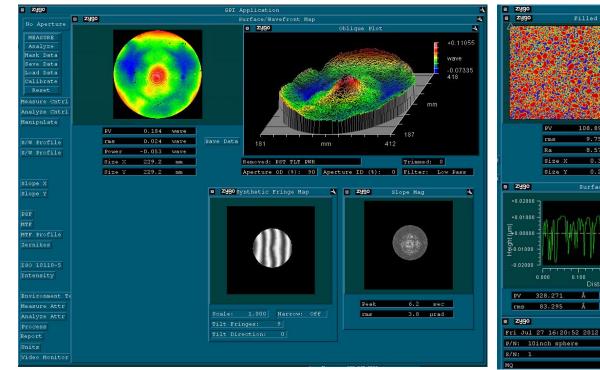
M CUBED

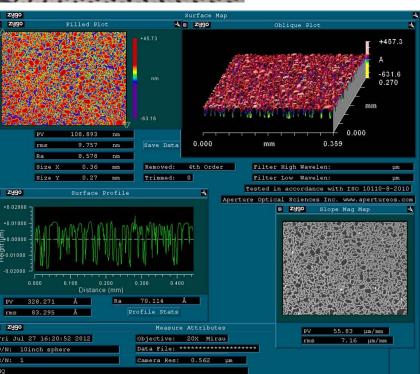
- Complex shape and large size capability (2.4 m x 1.7 m)
- Green to finished <0.5% dimensional change; EDMable
- Significant tailorability (particle size, Si-alloying, residual Si)
- SiC, B_4C , C_f /SiC, CNT/SIC, CNT/ B_4C
- Significant lapping and interferometry capacity
- Patented brazing (7,270,885) bonding technology (6,863,759) for cooled mirrors
- Directly polishable SiC



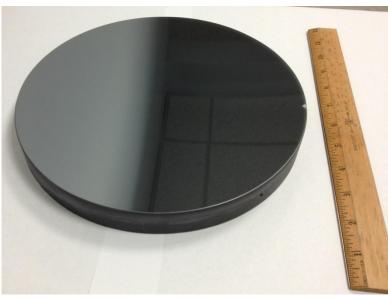
0.25 m Si-SiC Spherical Mirror (Uncoated): Figure & Finish

Directly polishable SiC (RBSC Grade FG) Eliminates Expensive Cladding ↓ \$\$


Figure: PV – 0.184 λ RMS – 0.024 λ



Finish: 8.6 nm Ra

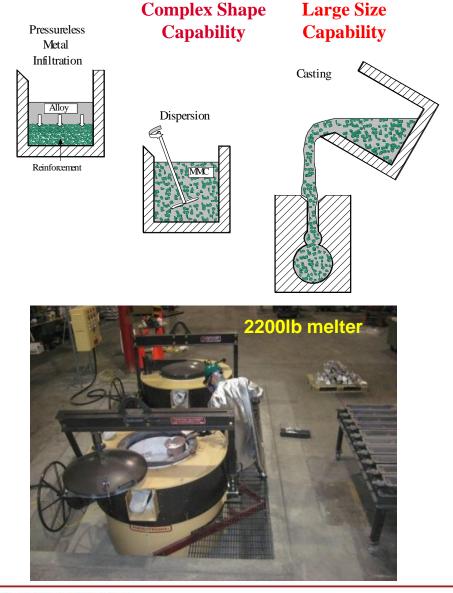


0.25 m SiC/C_f/CNT Spherical Mirror: Figure & Finish

Figure: PV – 0.186 λ RMS – 0.029 λ <u>Finish:</u> 4.6 Å Ra

2.5m ROC

- M CUBED

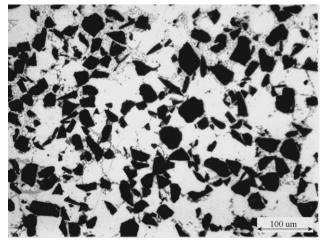

Property Comparison

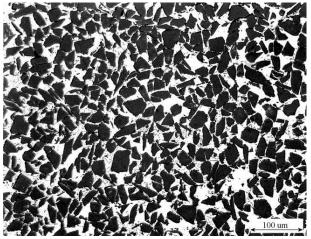
Material	ρ (g/cc)	E (GPa)	UBS (MPa)	UTS (MPa)	K _{IC} (MPa m ^½)	α (ppm/K 25-100C)	K (W/mK)	Ε/ρ	Κ/α
6061 AI	2.6	68		276	29.0	23.6	175	26.2	7.4
I-70H Be	1.85	287		237	11.0	11.3	216	155.1	19.1
Corning ULE	2.2	67	60		1.6	0.02	1.3	30.5	65.0
МСТ ММС									
Al/SiC _{30p}	2.78	125		370	15	14.0	160	45.0	11.4
Al/SiC _{55p}	2.95	200		340	11	10.0	180	67.8	18.0
MCT Ceramic				\bigcirc				\land	\smile
RB SiC FG	2.94	330	350		4	3.0	150	112.2	50.0
CNT/SiC	3.06	374	285		6.9	2.7	160	122.2	59.3
Diamond/SiC	3.27	625				2.2	373	191.1	168.0
RB B4C	2.54	370	250		4	4.8	52	145.7	10.8
CNT+C _f +B ₄ C	2.66	397	275		4.7			149.3	
Diamond/B ₄ C*	2.92	625				3.3	133	214.0	43.1
Other Ceramics								\cup	
CVD SiC	3.21	440	300		3.0	2.2	300	137.1	136.4

* - calculated

MMC Casting and Advantages

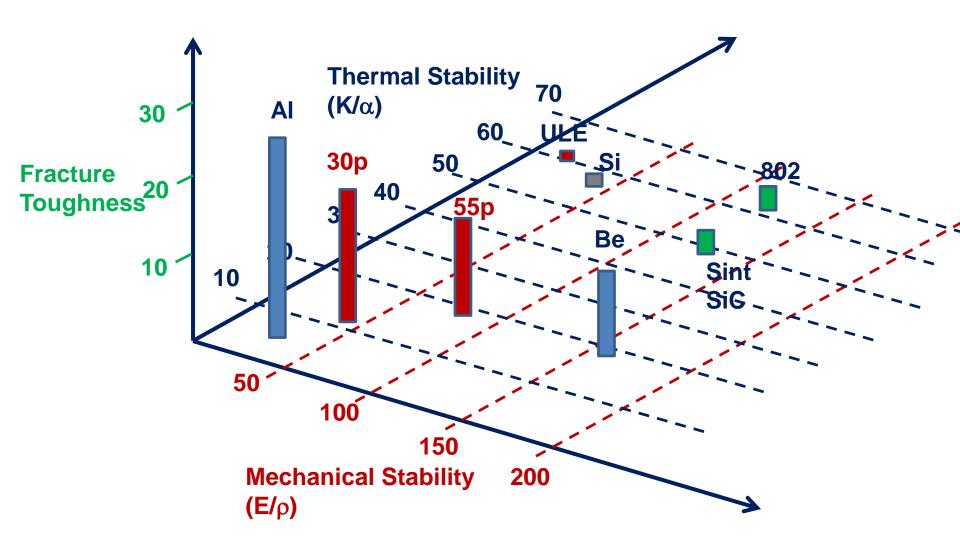
I CUBED


- Net and near-net shape fabrication with investment and sand casting
- Production technology (TRL, MRL > 6)
- Fully machinable, including direct threading
- CTE match with Ni plating, minimizing thermal distortion
- Mirror finishing of Ni plating with conventional diamond turning and polishing
- Casting capability in excess of 2 m x 2 m and 500 kg
- Greatly enhanced mechanical and thermal stability relative to traditional metals
- High damping capacity
- High toughness relative to ceramics

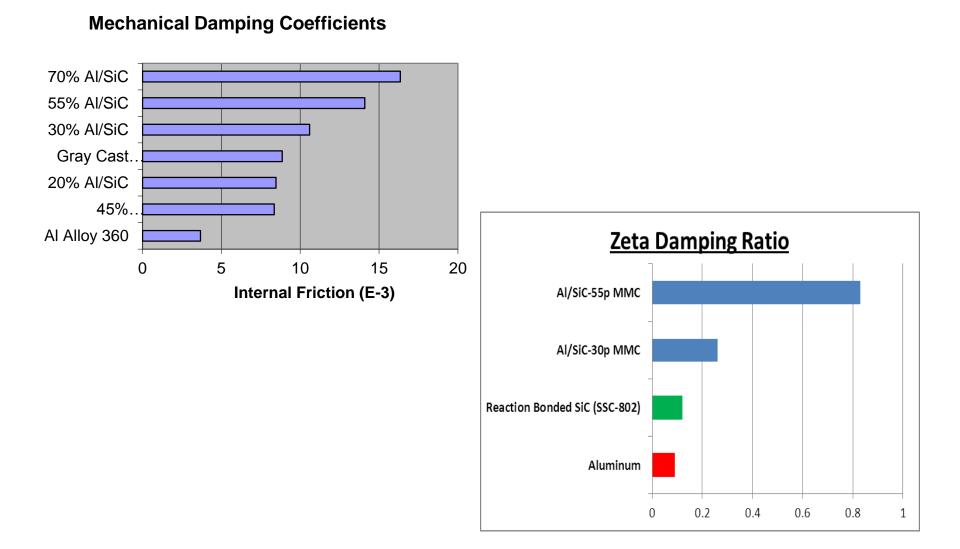

Material Property Data & Microstructures

	Metal Matrix (MM		
Property	Al/SiC _{30p}	Al/SiC _{55p}	6061Al
Ceramic (vol. %)	30	55	0
ρ (g/cc)	2.78	2.96	2.6
E(GPa)	120	202	68
UTS (MPa)	317	340	276
K _{IC} (MPa m ^{1/2})	15	11	29
α, 20-100°C (ppm/K)	14	10	23.6
K (W/m-K)	148	160	150

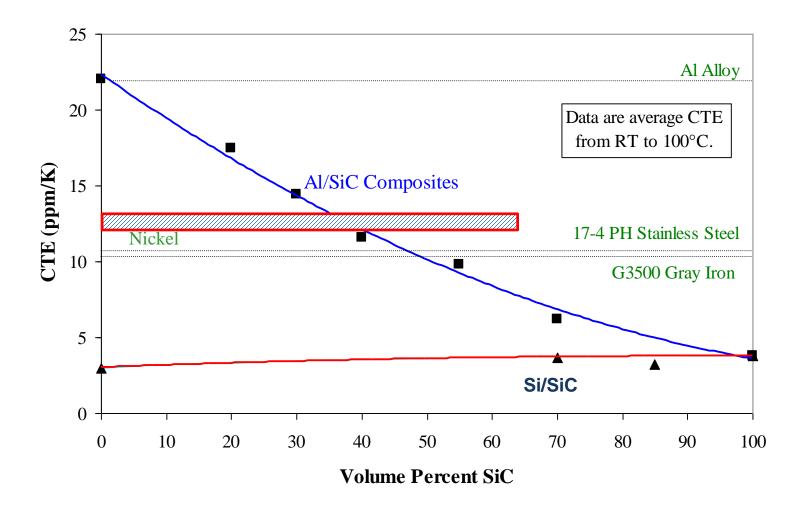
M CUBED



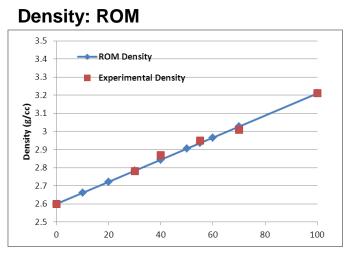
Al/SiC_{55p}



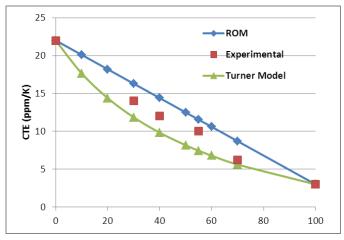
Property Comparison 3D Plot



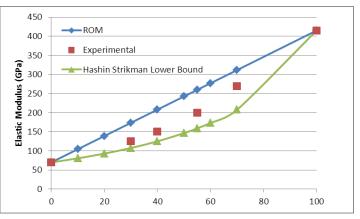
Damping Ability of MMCs



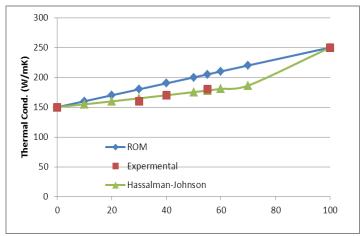
CTE Tailoring and Matching


Al/SiC MMC Comparison of Properties with Theoretical

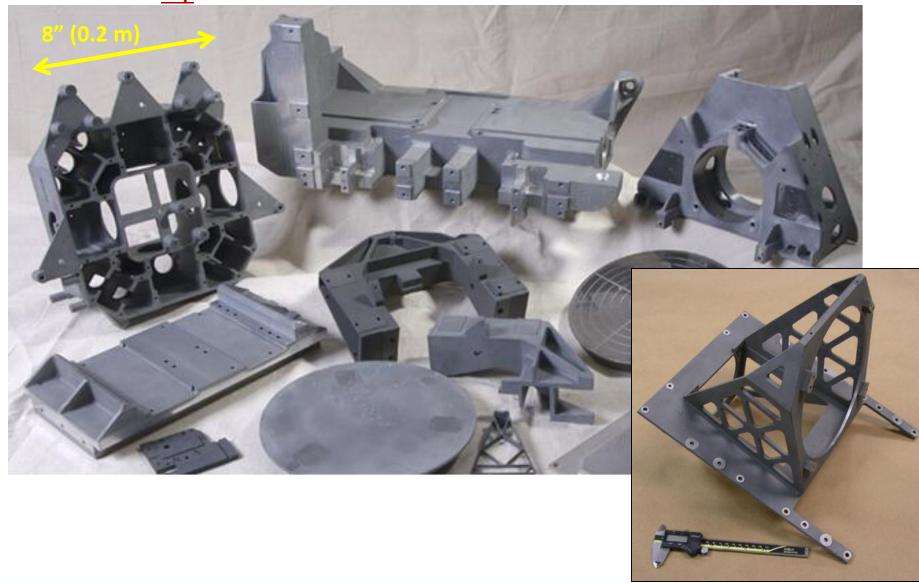
Predictions



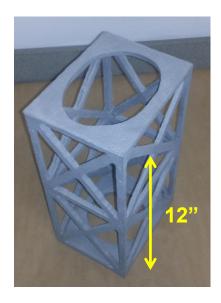
α: Turner Model


M CUBED

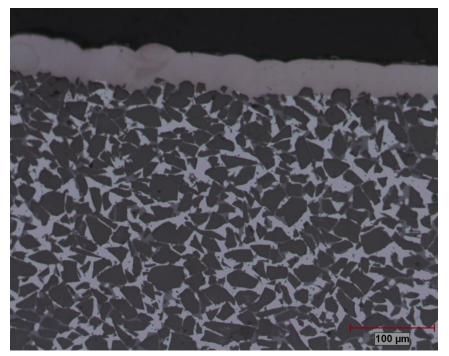
E: Hashin Strikman LB

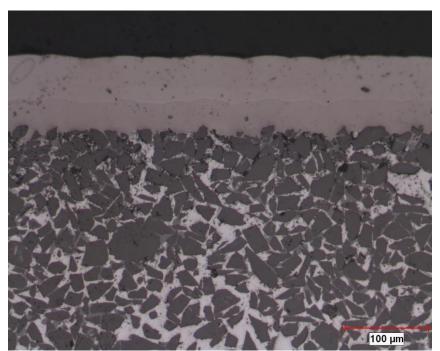


K: Hasselman-Johnson

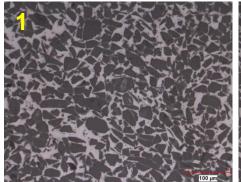


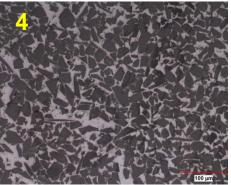
<u>Al/SiC_{30p}</u> Cast and Selectively Precision Finished Components


<u>Al/SiC _{55p} Cast and Slectively Precision Machined Components</u>

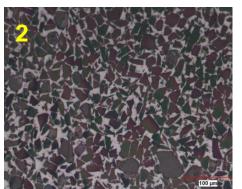


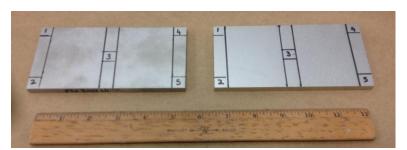
Thin and Thick Ni Plating- Bonding and Microstructure

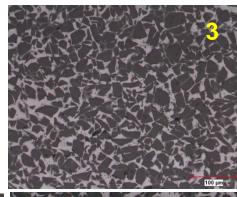


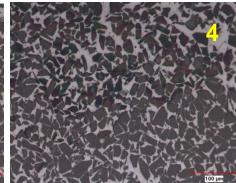

Detailed CTE measurements planned

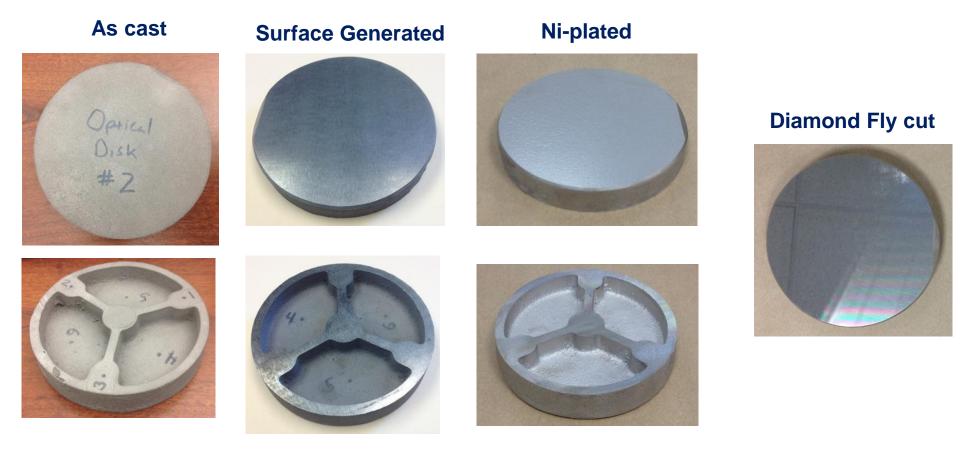
- Over operational temperature range
- MMC
- Ni
- Plated MMC


Microstructural Uniformity



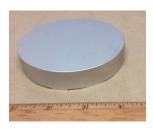



Image analysis: SiC content ±2%



Thin Ni-Plated Al/SiC_{55p} MMC Optic

• Finishing was limited due to the low thickness of Ni.


Thick Ni-plated MMC Components: Finishing and

Characterization Plan

Al/SiC_{30p}

Al/SiC_{55p}

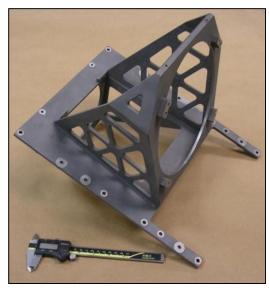
- Several components made
- Stabilized
- Surface generated
- Ni-plated
- Ready for diamond turning
- Finish polish
- Measure
- Thermal stability

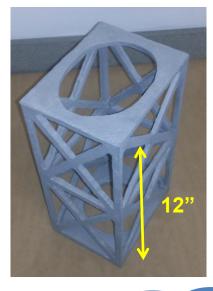
<u>Summary</u>

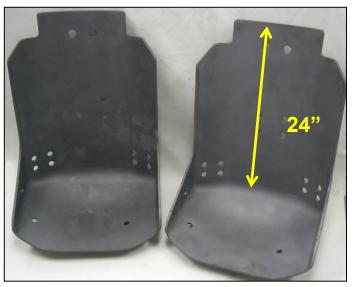
- Metal matrix composites offer a viable high-toughness, high specific stiffness, high thermal stability alternative for optics and structures
 - Enable an athermal design

M CUBED

- Microstructural uniformity of Al/SiC55p evaluated and SiC volume fraction was found to be within ±2%
- Several MMC components were fabricated, surface generation was completed, stress relieving was completed, and parts were Ni plated.
- Strongly adherent, uniform Ni plating was demonstrated
- Preliminary feasibility of diamond turning was demonstrated
- Further diamond turning and finishing of plano, spherical, and off-axis parabolic mirrors is underway
- Thermal stability testing (80°C to -60°C) of diamond turned optics is underway
- Ability to fabricated and finish MMC structures/optics housings was demonstrated
- Current production capacity for MMC optics and housings is 2.1m x 2.1m (this size components are made currently for stage applications)




- M CUBED


Cast Al/SiC-30p Optics Housing

Cast Al/SiC-55p Optics Housing

Reaction Bonded B₄C Helicopter Seat Tiles

Al/SiC55p MMC Large Structure

Thank You Any Questions?

300 mm SiC Wafer Chuck

Reaction Bonded SiC 450 mm Mirror

