

SBIR Phase II for Contract No. NNX17CM08C

"Ultra-stable Zero-CTE HoneySiC[™] and H²CMN Mirror Support Structures"

Contract Brief

Dr. William Fischer Principal Investigator Ph: (808) 245-6465 wfischer@ascmtech.com

Introduction

- HoneySiC[™]: Fantom's innovative, additively manufactured, ceramic matrix composites
 - HoneySiC (HCMC) T300 carbon fiber reinforced SiC CMC
 - H²CMN hybrid hierarchical ceramic matrix nanocomposite with CNTs
- Program effort addresses the need for stable, strain-free, precision optical structures under the influence of dynamic and thermal stimuli, specifically whiffle plates, delta frames and backplane
- Traceable to the needs of Cosmic Origins for UVOIR, Exo and FIR telescopes
- Technology gaps requiring precision optical structures:
 - Starshade Precision Deployment
 - Starshade Precision Deployment Petal Prototypes
- Maturation of this technology will allow NASA and Fantom to develop a method to create large aperture optical support structures and assemblies via deployment, assembly or active control
- HoneySiC additive manufacturing process significantly minimizes cost and schedule associated with post-production fabrication steps (machining, polishing, metrology).

Background & Technology Gaps

- NASA Strategic Plan 2014, New Worlds, New Horizons, seeks cost-effective, high performance advanced space telescopes for Astrophysics and Earth Science
- 2015 NASA Technology Roadmap (TA 8: Science Instruments, Observatories and Sensor Systems, part 8.2 Observatories) sub-goal for structures:
 - The ability of the structure to hold mirrors in a stable, strain-free state under the influence of anticipated dynamic and thermal stimuli
 - For extra-large apertures, a method to create the aperture via deployment, assembly, or formation flying
- NASA MSFC, GSFC and JPL interested in Ultra-Stable Mirror Support Structures for Exoplanet Missions
 - Telescopes with apertures of 4-meters or larger and using an internal coronagraph require a telescope wavefront stability that is on the order of 10 pico-meters RMS per 10 minute
 - IR/FIR missions requiring 8-meter or larger diameter mirrors with cryogenic deformations <100 nm RMS

Technical Solution: HoneySiC[™]

- HoneySiC[™]: Fantom's innovative, additively manufactured, ceramic matrix composites
 - HoneySiC T300 carbon fiber reinforced SiC CMC
 - H²CMN hybrid hierarchical ceramic matrix nanocomposite with CNTs
- Program effort addresses the need for stable, strain-free, precision optical structures under the influence of dynamic and thermal stimuli, specifically whiffle plates, delta frames and backplane
- Traceable to the needs of Cosmic Origins for UVOIR, Exo and FIR telescopes
- Maturation of this technology will allow NASA and Fantom to develop a method to create large aperture optical support structures and assemblies via deployment, assembly or active control
- HoneySiC additive manufacturing process significantly minimizes cost and schedule associated with post-production fabrication steps (machining, polishing, metrology).

HoneySiC[™] Features

- Rapid Prototyping Extremely rapid additive manufacturing process with all assets under a single roof.
 - Large complex mirrors/structures could be produced in a matter of weeks.
 - Web thickness < 1mm, core geometries (pocket depth, pocket size) easily tailored.
 - Minimizes machining, recurring/non-recurring costs; cost is 100X < beryllium.
- Ultra-low areal cost Cost of raw materials ~\$38K/m² for unpolished HoneySiC, which already meets NASA's goal of \$100K/m² -> ~100X reduction in mirror cost based on current cost of \$4-\$6 million/m².
- Ultra-low areal density
 - Facesheet density same as beryllium; sandwich constructions are a fraction of Be density.
 - Void space in cells of honeycomb enables maximum lightweighting and stiffness.
 - 95% lightweighting w.r.t. bulk silicon carbide.
 - Areal density of first panel made: 5.86 kg/m².
 - Estimated weight and areal density of a 255-mm mirror: 0.35 kg and 7.0 kg/m², respectively.
 - Estimated mass of 305-mm optical bench with inserts: 0.94 kg.
- Extreme dimensional stability CTE of HoneySiC confirmed to be near-zero with a variation of only -91 to -146 ppb/°C from -196°C to 0°C in testing at Southern Research Institute.
- Carbon fiber or SiC reinforced SiC structure
 - Thermal conductivity "supercharged" by addition of CNT
 - No coefficient of moisture expansion (CME)
 - Low Z for nuclear survivability
 - Electrically conductive for dissipating static charge build-up
 - ~2X higher fracture toughness than pure SiC, estimated ~4.6 MPa-m^{0.5}
- Nuclear and Space Survivable Precursor carbon-carbon honeycomb is flying on >100 spacecrafts.

Phase I Objectives

- Fantom would produce HCMC and H²CMN coupons for flexural strength and CTE measurements.
- Flexure testing would be performed by Professor Nejhad at the University of Hawaii using a 4-point flexure test set up. Properties to be determined: strength, strain/deflection, stiffness and toughness.
- In-plane coefficient of thermal expansion (CTE) testing would be performed at Southern Research Institute (SoRI) at the University of Alabama using a linear variable differential transformer (LVDT). Test temperature range: -196°C to RT.
 - LVDT measures change in length as a function of temperature
 - A dial gauge would be used to provide additional expansion data and validate the LVDT measurements.

Phase I Results – Flexure Testing

• Flexure testing was performed by Professor Nejhad. Specimens are shown on the left, test fixture is shown on the right.

• Raw load-deflection curves for Pristine (HCMC) and CNT (H²CMN) samples are shown below.

• The generated stress-strain data was used to deduce strength, toughness, modulus/stiffness and strainat-failure.

Sample	Avg. Flexure Strength (MPa)	Avg. Real Toughness (KJ/m³)	Avg. E Modulus (MPa)	Avg. Flexure Strain at Failure (mm/mm)					
HoneySiC™	63.96	44.55	53,116.96	0.00139					
H ² CMN	40.87	18.49	54,281.89	0.00090					
Notes	CNT had ~36% less strength	CNT had ~59% less toughness	CNT had ~2% higher stiffness	CNT had ~35% less strain at failure					

Phase I Results – CTE Testing

• LVDT test set up for in-plane CTE measurements shown below.

Cooling Voter In

-1

Tabulated data is shown below for Pristine (HCMC, left) and CNT samples (H²CMN, right). Error bars represent the accuracy of the quartz dilatometer (25 ppm)

Coolino Veter But

Quertz Push Rod

Heater Element-

Spectrept

Phase I Conclusions

Mechanical Measurements

- The powder impregnation process during SMP-730 prepregging allowed sufficient infiltration into HCMC samples, but ineffective for H2CMN since the CNT growth requires a viscous matrix to penetrate the nanoforest.
- It is believed the CNT matrix wet-outs were incomplete and interlaminar bonding was relatively weak, leading to reduced mechanical performance in strength, toughness and strain-at-failure.
- H²CMN elastic modulus increased slightly due to the sandwich-type structure.
- It is believed that the advantages of CNTs will be realized if a less viscous prepregging matrix (SMP-10) is used as the initial prepregging matrix. This will be explored in Phase II.

CTE Measurements

- Both HoneySiC materials exhibited relatively zero expansion in the in-plane direction from -196°C to RT.
- Negative expansion was observed between -196°C and -128°C.

Phase II Proposed Effort

- Collaborate with NASA MSFC, GSFC, JPL and Northrop Grumman Aerospace Systems (NGAS) to design a prototype whiffle plate, delta frame or tube structure to be made using HoneySiC or H²CMN materials that will support space-based telescope applications.
- Supplement the suite of HCMC and H²CMN material properties measurements as requested by NASA and NGAS.
- Produce HCMC and H²CMN prototype(s) for demonstration of the technology.
- Characterize the prototype via mechanical property testing.
- Demonstrate superior performance to the incumbent material (M55J cyanate ester), which is an organic material and subject to outgassing, dimensional instability under temperature and environmental fluctuations.

Phase II Progress

- Material procurement for technology demonstration prototypes HCMC and H²CMN prototype(s)
- Planning for manufacturing of one of the following:

Figure 1. Latch, mounting bracket, struts, whiffle plate, delta frame

Figure 2. Composite tube structure (yellow)

Figure 3. Cassegrain telescope structure

NASA Applications

- NASA sees potential for HoneySiC[™] as an affordable technology for large observatories and future astrophysics missions⁵ for:
 - The Formative Era, answering such questions as "What are exoplanets like?"
 - Characterizing planet forming disks and planetary atmospheres with the LUVOIR Surveyor.
 - Searching for life using the LUVOIR Surveyor to obtain full-disk images and spectra of pale blue dots.
 - Making longitudinal maps and detecting seasonal variations on exoEarths.
 - Searching for signs of habitability and evidence of biological activity on exoEarths.
 - The Visionary ERA, searching for life using an ExoEarth Mapper to produce resolved maps and spectra of "New Earth", confirming surface water and identifying possible life.

Gov't & Commercial Markets

SECTOR	Market	# Units	Value	Comments					
	Airborne & Space-Based EO Systems	>23K units total ~2-3K/year	\$35B total, \$2.9-\$5.1B/year	POD based, Programs include airborne pilot visual navigation and weapon delivery aids; airborne IR/EO countermeasures; automatic target acquisition					
Covernment	Land & Sea Based EO Systems	>560K units total, ~50,000/year	\$8.1B, \$500M-\$1B/year	Primarily thermal weapon sites and night vision					
Government	UAV Recon Systems	1600 units total >80 Programs	\$16B total, \$1-2B/year	Military Uses					
	Surface to Air Missiles	>82K units total, 30 manufacturers, >70 systems	\$21B	Man portable to Theater Ballistic Defense					
	NASA/JPL Missions	20 missions total, 1-3 missions/year, 3-4 small instruments/mission	\$480M total instruments, \$24-72M/year	5 year development lead time					
	Remote Sensing	139 spacecraft total, 10-25 spacecraft/year, 3-4 instruments/SC	\$16.3B total, \$60-100M/year for instruments	Imaging, Surveillance, Reconnaissance					
	Solar Power Generation	100s of Acres Low-Tech Mirrors, Dozens of Hi-Tech per Plant	\$500M total, \$50\$150M/year	Green Power for Grid					
Commercial & Civil	UAV Civil	100's units, 10-50 /year ramp up	\$1.8B	Numerous Civil & commercia Applications					
	Semi-conductor	1,000's units, cyclical investment	\$100M	Beam Steeering, Laser Cuttting and Welding, Lithography					
	Communications	100,000's units, 1000s per year	\$2B	Fibers, gratings, windows					

Summary of Tasks

- Task 1: Kick-off and Requirements Review
 - Telecon with Ron Eng (NASA), Dr. Bill Fischer (Fantom), Professor Mehrdad Nejhad (UH), Jon Arenberg (Northrop Grumman)
- Task 2: TIMs
 - Monthly technical interchange meetings will establish program status, action items and technical progress.
- Task 3: H²CMN Validation (19 weeks)
 - Prepare coupons using SMP-10 as the initial prepregging matrix.
- Task 4: HCMC and H²CMN Prototype Definition (10 weeks)
 - A prototype design will be collaboratively designed by Fantom, NASA, NGAS and Professor Nejhad
- Task 5: Prototype Design and Engineering (16 weeks)
 - FEM will be used to define design and performance requirements.
 - Design concepts will be refined and optimized for HoneySiC[™]; not a redesign of the original component.
 - ICDs, preliminary and final manufacturing drawings will be generated.

Summary of Tasks

- Task 6: Joint Specimen Production (22 weeks)
 - Full scale specimens of the intended prototype joint will be produced to replicate the design, application and use of fasteners/hardware for mechanical testing (or other testing deemed appropriate by NGAS and NASA).
 - We anticipate there will be several candidate designs.
- Task 7: Joint Specimen Testing (5 weeks)
 - Fantom will test the strength of at least one joint specimen design.
 - Final selection will be based on manufacturability, cost effectiveness and strength test results.
- Task 8: Prototype Definition (28 weeks)
 - An HCMC or H²CMN prototype will be produced based on the D&E and joint specimen testing in Tasks 5 and 7.
 - Tentative plan is to make a scaled-down version of whiffle plate, delta frame or tube structure. Scaling ratio will depend on the selected component relative to UH's furnace workspace (13"x13"x14").
 - Estimated task time includes procurement of materials.

Summary of Tasks

- Task 9: Prototype Testing (5 weeks)
 - Mechanical testing will be performed at UH.
- Task 10: Phase II-E Application and Plan (12 months into POP)
 - Fantom, with financial investment from MDA, intends to apply for a P2-E.
 - The proposed scope of work is as follows:
 - Additional material characterization of HoneySiC[™] materials. Specifically:
 - Thru-thickness CTE
 - In-plane CTE at ppb level (optional)
 - Thermal conductivity
 - Volume resistivity
 - BRDF using visible and single line laser sources
 - Development of 3D printing processes for HoneySiC[™] material systems
 - Design and fabricate a meter-class telescope front structure
- Task 11: Phase III Plan
 - Fantom, NASA, NGAS and UH will develop a preliminary and strategic plan for Phase III and transition to commercial production.

Project Schedule

- Period of Performance: 1 May 2017 30 April 2019
- Project schedule defined to complete all tasks by March 8, 2019

Task Name	Duration	Start	Finish	1,2	017	H	alf 2	, 201	17	Ha	alf 1,	201	8	Hal	f 2,	201	8	Ha	lf 1, :	2019
HoneySiC and H2CMN for Mirror Support Structures	26.15 mons	Mon 4/3/17	Wed 4/3/19	M		11		510		11			m J	<u>.</u>	<u> </u>	50		11	F M	
Contract Start Date	1 day	Mon 4/3/17	Mon 4/3/17	Li																-
Task 1: Kick Off Meeting	1 day	Mon 4/10/17	Mon 4/10/17		I I															
Task 2: Monthly Technical Interchange Meetings	480 days	Mon 5/15/17	Fri 3/15/19		1	I I	1	11			1	L L	11	1	I I		1	II.	11	
Task 3: H2CMN Validation	95 days	Mon 4/24/17	Fri 9/1/17				-	•												
ASTM C1341 and CTE Coupon Fabrication	4 mons	Mon 4/24/17	Fri 8/11/17				Ξŋ													
ASTM C1341 and CTE testing	3 wks	Mon 8/14/17	Fri 9/1/17				Ň													
Task 4: HoneySiC and H2CMN Prototype Definition	10 wks	Wed 5/17/17	Tue 7/25/17				h													
Task 5: Prototype Design and Engineering	16 wks	Wed 7/26/17	Tue 11/14/17				Ě.		ר											
Task 6: Joint Specimen Production	22 wks	Wed 11/15/17	Tue 4/17/18						Ľ			1								
Task 7: Joint Specimen Testing	25 days	Wed 4/18/18	Tue 5/22/18																	
Testing	4 wks	Wed 4/18/18	Tue 5/15/18										ĺЪ							
Data Reduction	1 wk	Wed 5/16/18	Tue 5/22/18										Ğ.							
Task 8: Prototype Production	28 wks	Wed 5/23/18	Tue 12/4/18										Ň	:						
Task 9: Prototype Testing	25 days	Wed 12/5/18	Tue 1/8/19																	
Testing	4 wks	Wed 12/5/18	Tue 1/1/19															1		
Data Reduction	1 wk	Wed 1/2/19	Tue 1/8/19															ľ		
Task 10: Phase II-E Application	3 mons	Tue 4/3/18	Mon 6/25/18											1						
Task 11: Phase III Plan and Final Report	135 days	Mon 9/3/18	Fri 3/8/19												•			-	-	
Phase III Planning	22 wks	Mon 9/3/18	Fri 2/1/19																	
Final Report	4 wks	Mon 2/11/19	Fri 3/8/19																	
						-				-				-						