Lightweight, Scalable Manufacturing of Telescope Optics

C. Jensen, W.B. Choi, S. Sampath ReliaCoat Technologies, LLC, East Setauket, NY 11733

S. Romaine Smithsonian Astrophysical Observatory, Cambridge, MA 02138

November 19, 2014

Smithsonian Astrophysical Observatorv

SBIR Phase II: S2.04-9446 Contract# NNX14CM05P

Need for Lightweight Telescope Optics

- Decrease the weight of current Wolter Type I optics to allow for greater shell packing and thus increase effective X-ray collection area (i.e. increase the optical surface area per unit mass)
- Reduce the requirements and cost of telescope launch vehicle

Chandra X-ray observatory utilizing 4 nested zerodur optics with the outer shell measuring 1.2 meters in diameter.

Cross sectional view of Wolter I optic showing grazing angle reflection and nested reflector capability

Current State of the Art X-ray observatory (XMM Newton) utilizing 58 nested reflector shells; largest reflector 70cm diameter.

Note the increased number of shells compared to that of Chandra resulting in greater optical area and thus greater X-ray collection

Benefit of Electroformed Optic

- Individual mirror thickness reduced by greater than an order of magnitude (1mm vs. 20mm)
- Reduced mirror thickness allow for a greater number of shells to be nested

Disadvantage of Electroformed Optic

- Density of Ni compared to zerodur
- Figure accuracy not as good as zerodur

NiCo alone is too heavy for X-ray telescope missions

There exists a need to replace much of the NiCo with a less dense material

Telescope Optics: Proposed Innovation

Proposed Innovation

- Replace zerodur optic with NiCo shell and thermal spray ceramic support structure
- Utilize NiCo electroforming to replicate the surface micro-roughness of the mandrel
- Combine a graded-density lightweight ceramic support coating to hold figure accuracy and supply rigidity for handling

What is Thermal Spray

Wide Range of Thermal Spray Coated Components							
APPLICATIONS	Energy - Gas Turbine Engine	Industrial machinery	Aviation Engine / Landing Gear	Bio- implants	Metal / Paper Manufacturing	Electronics Manufacturing	
Thermal Spray Processes	APS	HVOF	HVOF	APS	HVOF	APS	
COATING MATERIAL & MICROSTRUCTURE	GdZr Porous YSZ	Carbide-Metal	Carbide-Metal	BOROUS HA	Carbide-Metal		
PHYSICAL CHARACTERISTICS	Thickness Weight Porosity	Thickness Crack Porosity	Thickness Crack Weight	Thickness Defect Density Roughness	Thickness Crack Roughness	Thickness Defect Density	
PROPERTIES & PERFORMANCES	Residual Stress Adhesion Sintering/Aging Conductivity Toughness	Residual Stress Adhesion Strength Toughness Wear	Residual Stress Adhesion Strength Toughness Wear	Residual Stress Adhesion Toughness Phase Stability	Residual Stress Adhesion Strength Toughness Wear	Residual Stress Adhesion Erosion Phase Stability Thermal Expansion	

Process Optimization of Proposed Coating Structure

Design of Experiments

Residual Stress Evolution Optimization

Why Thermal Spray for this Application?

Materials Selection

- Wide array of materials to select from
 - Metals, ceramics, polymers, composites
- Ability to tailor the material to not only match the expansion but also provide compliance via defects (thermal cycling compliance)

Process Parameters

- Ability to tailor the microstructure, density, and interface through use of graded layers
- Ability to control deposition temperature
 - Robot raster speed
 - Secondary cooling

NiAl deposited onto canvas

Component Manufacturing

- Ability to deposit onto large cylindrical geometries
 - Easily scalable
 - Deposit directly onto electroformed shell
- Cost effective and efficient
- Established industry base, does not require large capital expense for application

Challenges and Mitigation Strategies

Defined Challenges	Proposed Mitigation Strategies			
Light weight, rigid & high toughness carrier layer	 Base structure of Al₂O₃ or other porous ceramic coating Al₂O₃-Aluminum composite/functionally graded structure 			
Scale up production & manufacturing	 Demonstrate on 1/2m diameter mandrel surface 			
No damage to the electroplated NiCo layer	 Minimal to no peening stress during TS coating deposition Ductile metallic layer as a bond coat Hard PVD interlayer (PVD TiN or BN) 			
TS Coating residual stress compatibility	 Select similar CTE coating material as NiCo TS coating deposition using in-situ coating sensor (ICP) to monitor residual stress evolution & determine the optimal process parameters 			
Low substrate deposition temperature	 Limit quenching stress Low APS process condition. Explore Twin Wire Arc and Flame Spray Cooling jet, faster raster speed, off-angle deposition 			
Strong adhesion to smooth NiCo layer	Apply a similar CTE bond coat First coating pass analysis using ICP sensor for adhesion criteria SEM cross-sectional metallography ASTM C633 bond strength test for quantifying adhesion strength			

Smithsonian Astrophysical Observatory

Detailed Design Plan of Proposed Innovation

Proposed Coating Development

	Optic Shell	Barrier Layer	Bond Coat	Graded Ceramic
Composition	NiCo	TiN BN	No Bond Coat Al Ni-5%Al	$\begin{array}{c} Al_{2}O_{3} \\ 5\% \text{ wt Al } / 95\% \text{ wt Al}_{2}O_{3} \\ 10\% \text{ wt Al} / 90\% \text{ wt Al}_{2}O_{3} \end{array}$
Thickness	25μm 50μm 75μm 100μm	No Barrier 1-2μm	No Bond Coat 10μm	150μm 200μm
Process Variables	Bath chemistry, pH, Stress	Deposition rate, Pressure, Gas flow, Target-sub distance	Nozzle, Torch Power, Total gas flow, Robot speed, Spray distance, Particle temperature, Particle velocity	

NASA SBIR Proposed Innovation

Proposed Innovation

- Replace zerodur optic with NiCo shell and thermal spray ceramic support structure
- Utilize NiCo electroforming to **replicate** the surface micro-roughness of the mandrel
- Combine a graded-density lightweight ceramic support coating to hold figure accuracy and supply rigidity for handling

Smithsonian Astrophysical Observatory

Development and Optimization Approach

Aluminum Powder

Fine powder size to minimize particle energy

Evaluate potential particle damage using nickel and aluminum foil

NiCo Coated Si Wafer

Process development using NiCo plated silicon wafers (due to mandrel availability), continued testing on flat and conical mandrels to evaluate X-ray performance

Coating Deposition Summary: APS Coating

Electroformed NiCo / Ni-5%Al Bond Coat & Al Coating

Electroformed NiCo / Ni-5%Al Bond Coat / Al/Al₂O₃ Blend / Al₂O₃ Top Coat)

APS Multi-Layer Deposition on NiCo Coated Surrogated Mandrel

Phase I Accomplishment

NiCo coated Mandrel

Thermal spray coated mandrel

Turner Press

Coating Physical Property Assessment

Coating deposition on silicon wafers attached to surrogated mandrel on a instrumented turntable

- Assess optical surface deformation via 3D surface profilometry
- Coating microstructural analysis
- Mechanical properties: indentation, adhesion tests, stiffness

Observatory

 Thermal properties: CTE analysis for stress evolution analysis

Technologies

Phase II Deliverable : Two Nested Shell Telescope

Assembly of 2 nested shell telescope

Photographs of structure used to align multiple Wolter shells. Similar structure will be fabricated for X-ray testing in year 2.

Full beam X-ray reflectivity measurements * Performed by SAO staff

