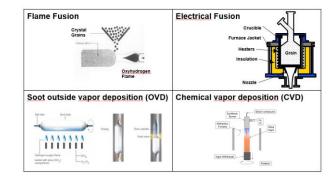
Heraeus

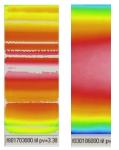
Heraeus Fused Silica Opaque Optical Diffuser Material: HOD500

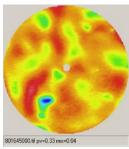
Robert Sawyer NASA Mirror Tech Days

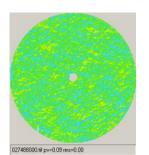
¹Heraeus Tenevo, LLC, Buford, GA; ²Heraeus Quarzglas GmbH & Co. KG, Hanau, Germany

Robert Sawyer | Nov 11th 2015 Seite 1


Content


- Heraeus Quarzglas
- Definition: Diffuser
- Challenges on Diffuser
- Heraeus Optical Diffuser: HOD-500
 - Process
 - Requirements / Specifications
 - Characterization
- Applications
- Summary

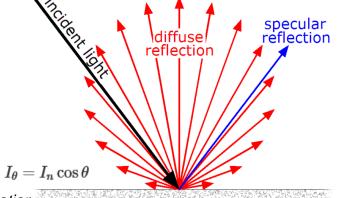

Heraeus


Heraeus Quarzglas - What sets us apart?

- More than 100 years of experience in quartz glass
- All 4 production processes in house
- Only material supplier with 3-D homogenisation process
- Precision molding
- R&D team for support and providing technical data

Custom Tailored Products

- Optics for Fusion lasers:
 - NIF, CEA, LLE Omega
- Quartz glass for Space Applications
 - Laser Ranging, Einstein Gravity Probe B, Vista
- Optics for Science
 - VIRGO & LIGO & GEO600
- Defense
 - Air Borne Laser
 - UAV / Directed Energy



Definition: Diffuser

- Optical diffusers are used for uniform dispersion of light in a variety of industrial applications.
- In optics, a diffuser is any device that diffuses, spreads out or scatters light in some manner, to give soft light.
 - Light reflects and diffused from a white surface
 - translucent materials as compact optical diffusers

Perfect diffuser:

 Lambertian reflectance (its brightness appears the same from any angle of view)

Fairchild, Mark D.: Color Appearance Models. John Wiley & Sons. p. 6: $^{I_{\theta}}$ = Juds, Scott M.: Photoelectric sensors and controls: selection and application.

Current Products

- Ground or Chemically treated Glass
- Flashed Opal glass surfaces
- PTFE plastic (Polytetrafluoroethylene)
- OM-100 from Heraeus, designed for Semi-Conductor applications

Disadvantages

Ground, Chemically or Flashed Glass)

- Almost Lambertian diffuser
- Depending on base material different working wavelength ranges

PTFE plastic (Polytetrafluoroethylene)

- for >400 °C loss of stability
- Change of reflection behavior over time
 → recalibration
 - Reflectivity loss below 250nm
 - Potential UV degradation
 - Low density of 1.25 1.5 g/cm3 leads to bad mechanical stability

porous properties

Opaque natural quartz, e.g. OM-100 from Heraeus

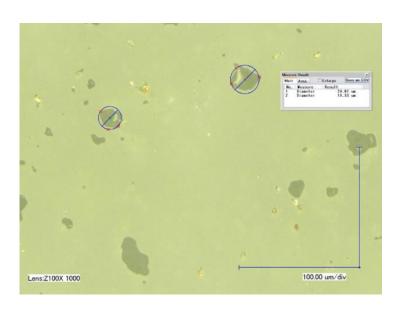
- Improvement for a lot of parameters, but still:
 - Marbel effect → no homogeneous density
 - Transmission and reflection loss in UV due to metallic impurities

HOD Motivation

- Product improvement over OM-100
- Maximum reflectivity/transmission from UV, VIS to NIR
- Longterm stable behavior
- Machineable
- Homogenious density distribution
- Low level of metallic impurities
- Low fluorescence
- Lambertian behavior

About HOD

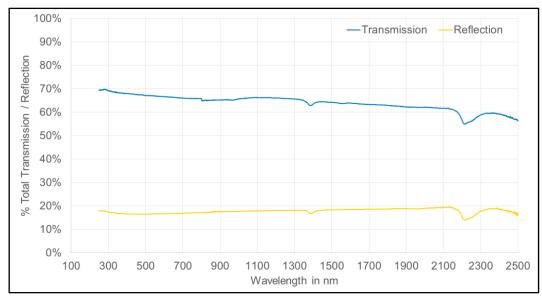
- Heraeus Optical Diffusers are uniform opaque (white) sintered fused silica and fused quartz materials molded into shape
- The material is produced by molding & high-temperature sintering of high purity fused silica or fused quartz powder into a bulk material with uniform micro-bubbles. The starting powders and controlled bubble content produce the desired optical characteristics
- This results in bulk material & components that produce the optimized performance
- Currently Heraeus Optical Diffuser materials & components are available in two grades
- □ HOD -300: fused quartz
- □ HOD-500 : fused silica (enhanced UV, purity)



Robert Sawyer Page 9

Heraeus Optical Diffuser – HOD-500

- Base material: fused silica
- Scattering centers: bubbles Ø<25µm</p>
 - Keyence light microscopy,
 100x and 1000x magnification


Can be used in **reflective** and **transmissive** mode

→ performance depends on thickness

Heraeus Optical Diffuser – HOD-500

- Density: 2.155 g/cm³ ± 0,25%
- Typical metallic impurities: < 0,36 ppm</p>
- OH content: ~455 ppm ± 5%
- Typical transmission / reflection for a 5mm thick fire polished diffuser*:

^{*}depends on thickness, surface finish and measurement setup

Element	Typical metallic impurities in ppb
Li	<10
Na	34
K	24
Mg	15
Ca	120
Fe	29
Cu	<8
Cr	<8
Mn	<8
Ti	<10
Al	50
Zr	<10
Ni	<8
Мо	<10
W	<10
С	<10

Applications

- Radiation hard regime
 - Diffuser in space bound spectroscopy, e.g. satellites for solar or atmospheric measurement/analysis
- Diffuser application in IR and UV
 - Spectroscopy
- Laser Calibration standards
 - Spectroscopy
- Uniform radiation cavity
 - Laser cavities
 - Integrating sphere
- Attenuator / filter
 - Beam dump

Summary

- Heraeus Optical Diffuser HOD-500
- Customer tailored diffuser product initially developed for space applications
- opaque fused silica
 - Small enclosed air bubbles
 - Maximum reflectivity/transmissivity from UV to NIR
 - Closed porous
 - Strong and machinable
 - Long term stablility
 - Homogenious density
 - Low metallic impurities and low fluorescence
 - Lambertian behaviour
- A product for more than just space !!!!

