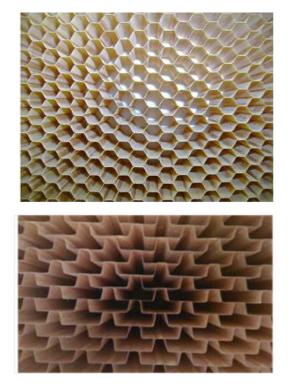
T300/SiC HoneySiC for Mirrors

Prepared by: Dr. Bill Goodman; 858-437-3899 bgoodman@trexenterprises.com

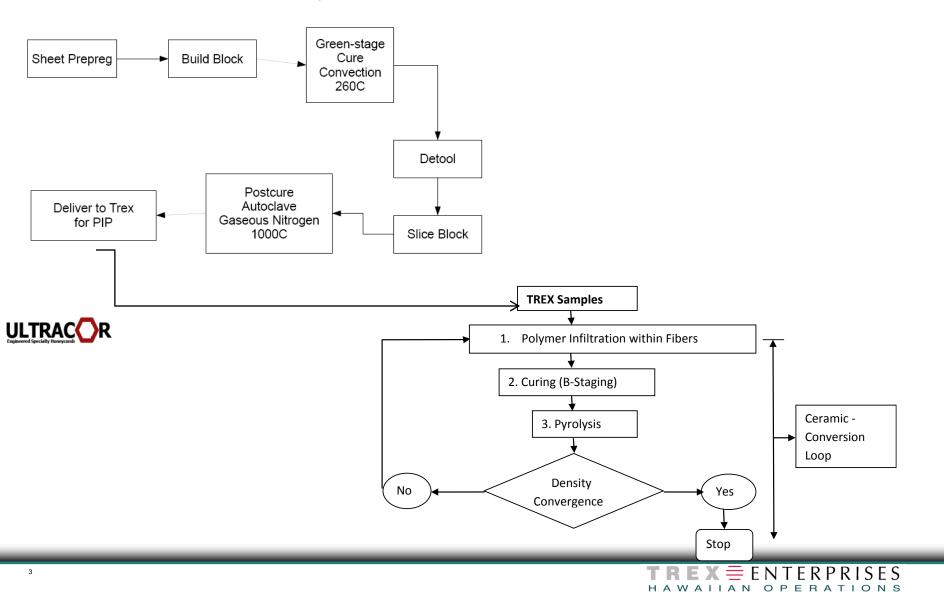
NASA Phase I SBIR Contract NNX10CF19P, and NASA Phase II SBIR Contract NNX11CB94C NASA MSFC COTR: Ron Eng


Mirror Technology Days; October 2, 2013

1

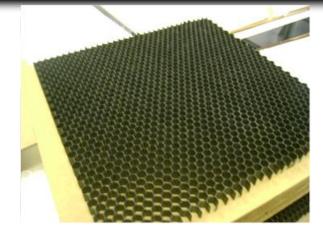
Understanding HoneySiC

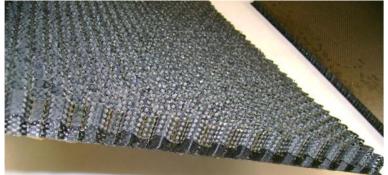
- HoneySiC is a molded ceramic matrix composite material composed of a honeycomb core sandwiched by facesheets.
 - Starting materials are prepreg plies.
 Matrix is carbon based resin, epoxy or preceramic polymers.
 - Reinforcement can be either discontinuous or continuous fibers.
 - In latter case the fibers can be uniaxial or woven.
- Prepreg materials are highly compliant with no ability to hold their shape, but they are readily molded.
- Ultracor Inc. molds our honeycomb.



Sizes, Shapes and Densities of Composite

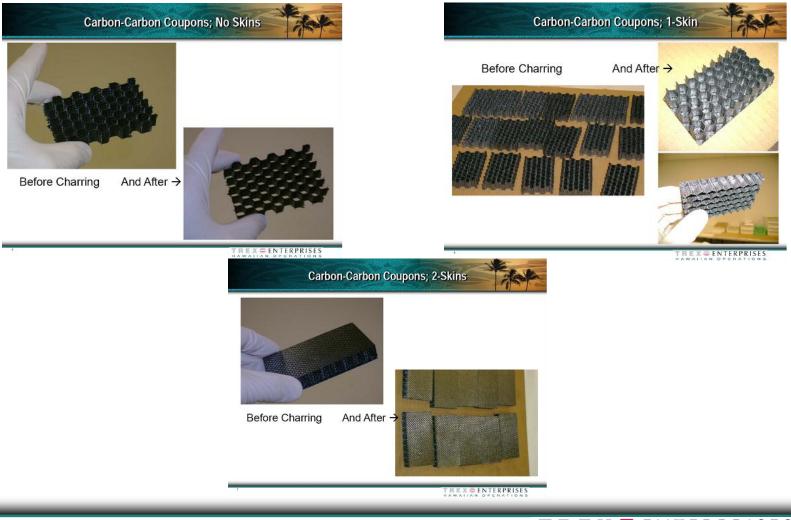
Honeycomb: By varying the size of the mandrels within the layup, varying degrees of density can be achieved. Typical sizes are 3/8" and 3/16". Cell sizes up to 1" have been manufactured. Similarly, the shape of the core can be altered.


Process Flow Example for One Set of Fiber/Matrix


Process Flow Chart for HoneySic Manufacture

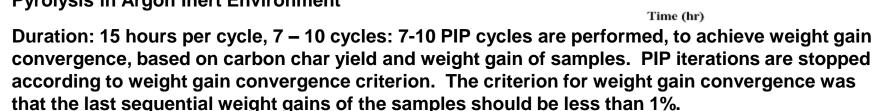
Phase I: Raw Materials Are Inexpensive

- Limitations of Phase I SBIR are 66% funding to Small Business
- LOW AREAL COST: We made a 1 cubic foot honeycomb block of phenolic reinforced T-300 polyacrylonitrile (PAN) carbon fiber.
- We cured it and sliced it into 0.5-inch sheets.
- We made laminate panels for facesheets.
 - Layer 1: 0/90 degrees;
 - Layer 2: ±45 degrees;
 - Layer 3: 90/0 degrees;
 - Layer 4: ±45 degrees;
 - 2 fiber layers pointed to the degree points 0, 45, 90, 135, and 180.
- One panel was open-backed, and one was closed-back.
- NOTE: There are no limitations to scale think Boeing 787 DreamLiner aircraft

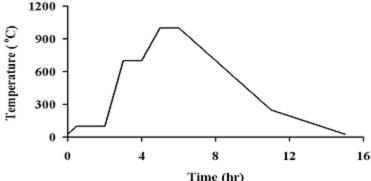


Phase I: Carbon-Carbon Honeycomb (CCH)

- Next we cut coupons and made Carbon-Carbon Honeycomb (CCH)
 - Char for ~11 hours at Temperature up to 815 °C.



Polymer Infiltration Pyrolysis (PIP)


Polymer Infiltration Pyrolysis (PIP) performed by University of Hawaii

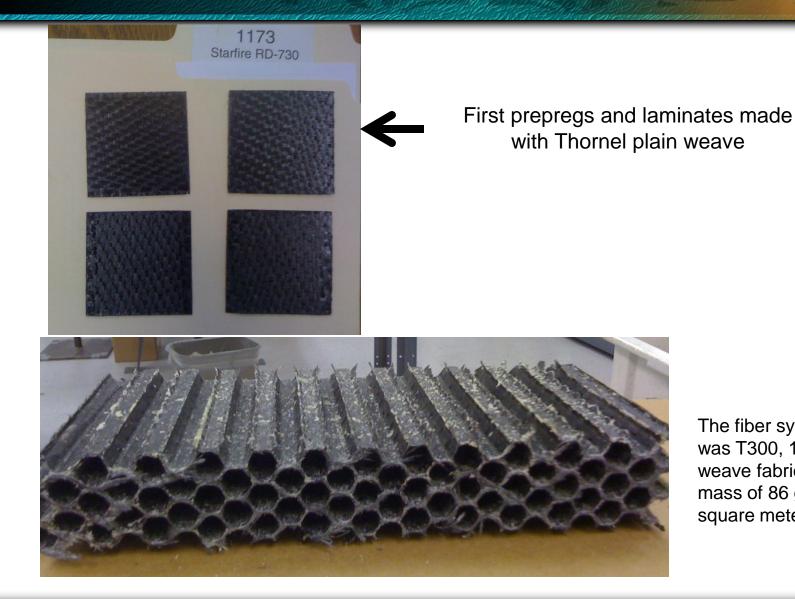
Polymer Infiltration (Re-infiltration)

- Environment: samples dipped in Pre-ceramic polymer (KION CERASET) in vacuum environment.
- Temperature: Room temperature.
- Duration: 30 minutes.
- Curing (B-Staging)
 - **Environment**: Atmospheric conditions
 - Temperature: 200 °C
 - Duration: 2 hours.
- **Pyrolysis in Argon Inert Environment**

C/C dual-skin composite panel has a density of 0.16 g/cm³, and C/C-SiC increases density to 0.25 g/cm³, about the same as 85% lightweighted Beryllium.

Can you make mirrors?

- I do not know, let's ask the Flying Pig?
- He says we need a polishable cladding with a matching CTE.
- He's super impressed by how light it is. And these can be massed produced from Master Molds – sweeeeeeeeet!


Phase II: A New Matrix Materials - Starfire® RD-730

A better CTE match should be obtained by replacing the carbon matrix with a SiC matrix and making a C/SiC part.

Starfire® RD-730 is a polycarbosilane

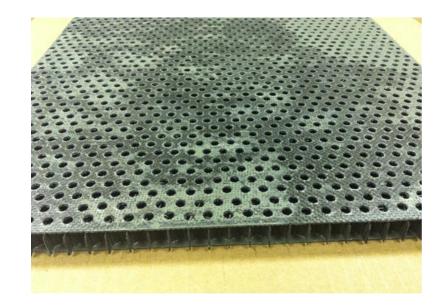
- Converts to thermally stable silicon carbide by direct pyrolysis.
- Solid at room temperature, flows at temperatures to 100 °C.
- Using melt processing, T-300 cloth fabrics can be infiltrated with RD-730, which then solidifies and becomes a hard, machinable, thermoplastic.
- Thermoplastic form is our new prepreg material.
- The prepreg in block form can be machined to near-net shape, put in a mold and re-flowed (re-melted). The molded parts can then be cured (curable above 150 °C) to render a thermoset, which is again machinable.
- The cured polymer matrix composite can then be fired to form a high temperature, oxidation resistant, amorphous silicon carbide material. Pyrolysis at 1°C/minute to 1000 °C results in a black glassy material with a silicon carbide yield of 65-67%. This material is then ready for additional polymer infiltration pyrolysis to fully densify the part.

Pathfinder Tests with RD-730

The fiber system selected was T300, 1k tows, plain weave fabric with an areal mass of 86 grams per square meter (86 gsm)

Thornel Pathfinder PIP Results

- "Vacuum after Vacuumed Infiltration" with low viscosity preceramic polymer KION Ceraset.
- New process required 8 cycles of PIP. U of H obtained a very good convergence with consistency among all four coupons with a very low standard deviation (i.e., less than 3.6%), resulting in very high quality samples.


Averages for 4 samples	base	#1	#2	#3	#4	#5	#6	# 7	#8
%Avg total wt. gain	0	36.35	58.26	69.67	76.97	81.23	85.17	87.26	88.16
teration #	0								8.00
Standard Deviation	0	1.29	1.54	2.03	1.42	1.33	1.34	1.34	1.42
% Standard Deviation	0	3.56	2.65	2.92	1.84	1.63	1.58	1.54	1.61
100 90 80 50 50 50 30 20 20	verage Pe							•••	
40 30 20 10 8 8 8 0	i	2	3	4 Iteratio	5	6	7	8 9	

TREX = ENTERPRISES

Full Scale 2nd Generation T300/SMP-730 Panel

- Victimized by Murphy's law.
- First full scale honeycomb block delaminated during slicing. No issues with laminate facesheets.
- Second block made using revised temperature and pressure cure.
 That block successfully sliced and made into panels.

1st Pyrolysis

- Ist Pyrolysis step completed. Material too porous to conventionally machine and requires further PIP to strengthen it.
- Edges fray and delaminate.
- Too porous to vacuum chuck.

Technology Development Can Be Sporting

- Process development crossroad.
- As-cured HoneySiC panel is very fragile; coupons have displayed fraying at the edges.
- Machining best accomplished while the part still has some porosity. This means that several PIP cycles will be performed prior to machining; how many is yet to be determined.
- Have not established final preceramic polymer and final pyrolysis temperature.
- ◆ THE END. I HOPE YOU ENJOYED THIS. QUESTIONS?