Ultra-low Cost, Lightweight, Molded, Chalcogenide Glass-Silicon Oxycarbide Mirror Components

November 2015

Talk Outline

- Project Background
- PDC(Polymer-Derived-Ceramics)
 Significance- X-MAT[™] Development
- Large Mirror Blank Development
- Chalcogenide Sealing/Coating Development
- Conclusions

Who is Semplastics?

- 15 year old company focused on high performance plastics in electronics
- Recent development activities in novel high performance materials- X-MAT[™]
- US patent #8,961,840 issued 2/24/2015-Multiple Patents Pending
- Phase I NASA SBIR for lightweight optical mirrors granted in May 2015

What are the Main Goals of the Project?

- Reduce areal costs to less than \$500K/m²
 for UV/Optics and less than \$100K/m² for IR
 systems
- Reduce the weight of mirror substrate through molding lightweighted structures using lighter X-MAT[™] materials (SiOC)
- Make a High Performance Mirror Component that can meet NASA's requirements

Advantages of X-MAT[™] OC1

- Lightweight- 1.69 g/cc (SiC- 3.1 g/cc)
- High Temperature Range- -150C 1100C Continuous Usage
- Low Coefficient of Thermal Expansion- 0.60-1.27 x10E-6 in/in C (-150C - 300C)- Similar to Quartz
- Amorphous structure provides isotropic properties
- Very Green technology- Uses 20X less energy than typical SiC manufacturing processes!!

SiC Manufacturing Process*

***Overview of the production of sintered SiC Optics and optical subassemblies**, S. Williams, CoorsTek, Inc.; P. Deny, BOOSTEC Industries (France) [5868-04]

X-MAT[™] Mirror Blank Process

So What is the Big Deal with X-MAT™?

- Polymer resin instead of ceramic powders
- Typical Plastic Processes (molding, etc.) Available
- Shorter Manufacturing Intervals
- Chemical Bonding of the Materials rather than Sintering (Significantly Lower Energy)
- Tailored Material System Properties
- 3D Systems Rather than Traditional 2D(Sheet) PDC Systems

Significance/Review of Polymer-Derived Ceramics (PDCs)

- 40 year history of PDC Development activities
- Commercially Available Resins
- Current commercial usage limited to ceramic fibers, polymer coatings and thin ceramic films
- Multiple resin types and processes produce unique ceramic types and properties

PDC Technologies

J. Am. Ceram. Soc. 93 [7] p.1807 (2010)

Polymer to Ceramic Processing

Current PDC Limitations

- Can only produce thin films or fibers due to cracking and degradation of films thicker than several hundred microns
- * The polymer to ceramic conversion occurs with gas release which typically leads to cracks or pores which make the direct conversion of a preceramic part to a dense ceramic virtually unachievable, unless its dimension is typically <u>below a few</u> <u>hundred micrometers</u>(as in the case of fibers, coatings, or foams.) J. Am. Ceram. Soc. 93 [7] p.1811 (2010)

"Virtually Unachievable" Largest Bulk PDC Ever Made (No Fibers!)

Mirror Blank Deliverable: 0.25 meters

Properties of X-MAT™ OC1

TEST	VALUE	UNITS
Fracture Toughness	.96	Mpa-m^1/2
Flexural Strength	43.5	Мра
СТЕ	0.75	1E-6in/in°C
Young's Modulus	56	Gpa
Poisson's Ratio	.53	-
Density	1.69	g/cc

SEM of X-MAT™ OC1

Chalcogenide Sealing/Coating Development Activities

Design Matrix

			Zygo Imaging	SEM		Thermal Cycle	
Coating Type	Coatings #	Progress	RMS Roughness (μm)	Film Thickness (μm)	Penetration Depth (µm)	Temperature Change (°C)	Damage
Uncoated							
Uncoated	0	×	12.159				
Spin Coating							
0.4 mol	1						
	2	\checkmark	7.579			25-150	×
	4	\checkmark	5.927			25-150	×
0.6 mol	1						
	2	\checkmark	8.460			25-150	×
	4	\checkmark	6.022			25-150	×
0.8 mol	1	\checkmark	8.0214			25-150	×
	2	\checkmark	6.371			25-150	×
	4	\checkmark	4.390				×
Dip Coating							
0.4 mol	1						
	2	\checkmark	6.435			25-150	\checkmark
	4	\checkmark	8.385			25-150	\checkmark
0.6 mol	1						
	2	\checkmark	9.369			25-150	\checkmark
	4	\checkmark	8.301			25-150	\checkmark
0.8 mol	1	\checkmark	9.581			25-150	×
	2	\checkmark	19.560			25-150	 ✓
	4	\checkmark	23.464			25-150	\checkmark
							Jempias

SiOC PDC Uncoated Substrate

Uncoated SiOC PDC

- Highly porous
 - ➤ ~80% dense
- Highly Rough Surface
 - \triangleright RMS roughness of ~12 µm

ass Processing and Characterization Lab

As₂Se₃/PDC Experimental Parameters

- Solutions: made by dissolving powdered As₂Se₃ in Ethylenediamine.
- 2x coats: Deposit onto PDC in nitrogen atmosphere glovebox, anneal at 75 °C for ~24 hours after each deposition. Bake at 150 °C for ~15 hours after all layers applied.
- 4x coats: Deposit onto PDC in nitrogen atmosphere glovebox, anneal at 75°C for ~6 hours and bake at 150 °C after each deposition for ~15 hours.
- Thermal reflow: After 4 coats were applied, put in oven again at 240
 °C for 30 min to reflow the deposited glass.

Starting substrate (PDC):

Avg RMS Roughness: >10.129 μ m (\approx 12 μ m) Target RMS roughness: ~5nm

As₂Se₃ 4x Spin Coating (Zygo)

320

Semplastics

ng and Characterization Laborate

As₂Se₃ 4x Spin Coating (SEM)

20 µm	Mag = 454 X	EHT = 10.00 kV	Date :12 Jun 2015	6
	Signal A = InLens	WD = 18.6 mm	Time :10:45:58	UNIVERSITY OF CENTRAL FLOREDA

Semplastics

0.8 g/mL Spin Coat After Reflow

Roughness (Not Averaged): 1.911 μm

Glass Processing and Characterization L

Coating Conclusions

- **Spin coating** shows better reduction in RMS roughness for all solutions and all coating layers.
 - 1x & 2x coatings of 0.4, 0.6, & 0.8 mol solution do not lead to complete coverage and pore sealing
 - 4x coatings of 0.6 & 0.8 mol solutions lead to complete coverage and sealing with significantly reduced roughness
 - 0.8 mol 4x spin coat has been down selected for future work.
- **Dip coating** shows better coverage and pore sealing for all solutions and all coating layers.
 - Except for 1x dip coatings, gas evolution through thick uneven coating layer resulting in damage to on the surface.
 - Successive dip coatings leads to increased RMS roughness
- First round of thermal reflow conducted at 240°C for 30min
 Most samples show reduction in RMS roughness

Future Work

- A matrix of thermal reflow experiments will be outlined and experiments conducted with varying temperatures and times for 0.8 mol 4x spin coatings.
- A new series of dip coatings with thermal reflow after each coating will be performed with 0.8 mol solutions
- Once average roughness has been reduced below the 1 µm mark
 - work will be started on coating whole disks .
 - Cryo cycling experiments will temperatures ranging from -50 to 50°C

Glass Processing and Characterization La

Internal R&D Sealing and Coating Effort-Breaking News!

- Low CTE Coating- Negligible CTE Mismatch with X-MAT[™] OC1
- Seals Porous Surface
- Easily Integrated into Manufacturing Flow
- Easily Polished
- Excellent Aluminum Adhesion Properties

Coated X-MAT™ Sample(no metal)

Conclusions

- Largest Free Standing Bulk PDC Component Ever Produced- 0.25M Mirror Blank- 3D X-MAT[™] OC1 Material System
- Sealing/Coating Systems are being developed
- On Track for Phase 1 Deliverables
- Making a 1.0M Diameter Mirror is the next step in the Technology Development Progression

Acknowledgements

NASA- Ron Eng, Phil Stahl

UCF- Kathleen Richardson, Jason Lonergan

Semplastics- Arnie Hill, Todd Hubert, Matthew Stephens, Barbara Hopkins

