Advanced Athermal Telescope

The Peregrine Falcon Corporation NASA Mirror Tech Days 2017

Phase I Objectives

Using the current cosmic infrared background experiment (CIBER-2) parameters as target requirements and Peregrine's advances with Be-38Al / LID Bonding/Electroless Nickel Plating/SPDT:

- Improve performance and structural integrity while reducing mass.
- Provide a high degree of stability under changing thermal and physical environments.
- Physically demonstrate advantage/feasibility.
- Provide an initial Phase II telescope design with 28 cm² primary mirror for flight on CIBER-2.

CIBER-2 Observation Instrument

Athermal Telescope Flight Profile – CIBER-2

Specification of the CIBER-2 Telescope

Table 1. Specification of the CIBER-2 telescope.

Telescope type	Ritchey-Chretien
EPD (Entrance Pupil Diameter)	285 mm (at primary mirror)
EFL (Equivalent Focal Length)	930 mm
Arm-S	930.86 mm
Arm-M	929.61 mm
Arm-L	930.02 mm
FNO (F Number)	3.26
Arm-S	3.266
Arm-M	3.262
Arm-L	3.263
FOV (Field of View)	$2.3 \times 2.3 \text{ degree}^2$
Detector Format	2048×2048 pixels (Pixel size = 18 μ m)
Pixel Scale	4 arcsec / pixel

CIBER-2: Baseline Aluminum Mirror

Bread Board Al Model

Improved Al Mirror

Optimized Al Mirror

 $\begin{array}{l} \mathrm{PV}\sim \frac{1}{2}\ \lambda\\ \mathrm{RMS}\sim \frac{1}{8}\ \lambda\\ \mathrm{(Mounting\ Effects)} \end{array}$

Current CIBER-2 Baseline Telescope

- All Aluminum
- Primary Mirror P.V. $\frac{1}{2} \lambda$, RMS $\frac{1}{8} \lambda$
- Instrument First Mode ~ 40 Hz
- Stability to 80 K

Recap Athermal Material Approach

We have developed a material system to provide flight hardware.

TRL 4 to 7

Stable to $1/50^{\text{th}} \lambda$, 30 angstrom RMS, high modulus material 193 GPa vs. 69 GPa

Material Property Data for Analysis

Property	Aluminum 6061T6	Be-36Al (AMS7911)	Be-38Al / 6061T6
Mass Density, g/cc	2.70	2.10	77.8%
Modulus of Elasticity, GPa	69	193	279.7%
Yield Strength, MPa	255	193	75.7%
Coefficient of Thermal Expansion, ppm/°C	22.9	13.9	60.7%
Thermal Conductivity, W/m K	170	210	123.5%
Poisson's ratio	0.33	0.17	51.5%
Specific Stiffness (Modulus/Density)	25.6	91.4	357%

Launch Loads

Landing Load

Primary Mirror – Al vs. Be-38Al

Phase I Mock-Up for Testing

Vibration, damping, and thermal gradient.

Assembled Test Unit

Vibration Set-Up

Vibration/Damping Comparisons

Aluminum 6061-T6

Be-38AI

www.

Parallel Design Study: Stewart Platform

Mass Budget Baseline Al vs. Direct Substitute Be-38Al (25% Reduction)

	Aluminum	Be-38Al
Base Plate	20.35 lbs.	15.6 lbs.
Primary Mirror	7.67	4.4
SM_Support 1, 2, x4	4.00	3.0
Cassegrain Baffle, Baffle Base	2.07	2.07
SM_Support 10,11	1.81	1.4
Aperture Mask	1.04	1.04
Flexures	0.84	0.84
Secondary Mirror	0.83	0.65
Cal Lamp	0.22	0.22
Field Stop	0.01	0.01
Total	38.84 lbs.	29.23 lbs.

Phase II Objectives

- Mature initial design of Phase I to a critical design for build, test, and flight under Phase II using Be-38Al / LID Bonded / Electrical Nickel / SPDT Polish.
- Verify primary and secondary mirror precision and alignment at ambient and 80K.
- Build and test engineering telescope for qualification testing on board a sounding rocket.
- Build, test and deliver a proto-flight telescope.