# Advances in MEMS Deformable Mirrors and Spatial Light Modulators

#### **Steven Cornelissen**

Paul Bierden Boston Micromachines Corp.

Thomas Bifano Boston University



7th Annual Mirror Technology Days Albuquerque, NM August 1, 2007







# Ongoing MEMS DM development at BMC

- 4096 Element Continuous Facesheet DM (GPI)
  - Ground based high-contrast imaging system
- 331 Element Tip-Tilt-Piston DM (NASA SBIR Phase II)
  - Space-based visible nulling coronograph
- Large Aperture Continuous facesheet MEMS DM (NASA SBIR Phase II)
  - Space-based Adaptive Optics







# BMC Deformable Mirror Architecture



#### Continuous mirror (smooth phase control)

- Localized Influence Function
- Hysteresis-Free, Electrostatic Actuation
- Scalable and robust Architecture

BOSTON



Segmented mirror (uncoupled control)







## **MEMS DM Fabrication**



layers polysilicon & silicon pitride



<u>2. Actuator array</u>: Deposit pattern, etch sacrificial



<u>3. Mirror membrane</u>: Deposit, pattern, etch 2<sup>nd</sup> sacrificial oxide and 4<sup>th</sup> Polysilicon film



<u>4. MEMS DM</u>: Etch away sacrificial materials, CPD, and apply reflective coating



5. Electrical Interconnects: Die Attach and wirebond to custom ceramic chip carrier



### **MEMS DM Characteristics**



- 12x12 (3.3-4.95mm)
- 32x32 (9.3-10.5mm)
- Influence Function: 23-35%
- Surface Figure: 10-35nm RMS
- Fill Factor: 98.6-99.8%



# Life Cycling, Temperature, & Hysteresis Effects

BOSTON

MICROMACHINES





### DM Dynamic Response Characteristics

300um Pitch 32x32 Segmented DM Response to Step Voltage Input Input Signal: 100Hz Square Wave





1024 MEMS DM Validated in ExAO Testbed

- DM Actively Flattened to 0.54nm RMS WFE inc control band.
- Long term Stability: 0.08nm RMS

BOSTON

MICROMACHINES



1024 element (32x32) MEMS DM (Boston Micromachines Corp)



Don Gavel, Julia Evans, LLNL, LAO



# 64x64 DM Device Design Description

- Die Size: 49mm
- Array Size: 68x68
  - Active: 64x64
  - 2 inactive rows around periphery
- Actuator Pitch: 400µm
- Active Aperture: 25.2mm
- Fill Factor: > 99.5%
- 3µm stroke
- 1µm interactuator stroke
- <10 nm RMS surface figure</li>

Single Element Mirror surface







### Phase I Results – Stroke

#### **Phase 1 DM Electromechanical Performance**

measured by actuating a 3x3 array of elements



# MICROMACHINES Phase I Results – Settling Time

#### Phase 1 DM Step Response

Square Wave Voltage Input ~40-70V (~150nm displacement)



CORPORATION



# Phase I Results – DM Surface Quality

#### Baseline Device: 20.5nm RMS





 Surface figure improved from 20nm RMS to <6nm RMS by reducing print-thru





# **DM Packaging & Driver**

#### 4096 I/O Ceramic Chip Carrier



• Driver in Development (9/15/07):

- 3U Chassis, 16X 256 Channel Output boards
- Latency:
  - 15/30µs (1024 ch)
  - 45µs (4096 ch)
- 1<sup>st</sup> 4096 DMs are in house

8x 528 Pos MegArray Connector locations 3.3mm thick

116mm

127mm



# Tip/Tilt Piston DM for TPF-C

- DM required for visiblenulling coronograph
  - control subaperture wavefront phase (piston) and amplitude (tip/tilt)
- 331 hexagonal elements
- Each mirror segment has three piston actuators, allowing three degrees of freedom
  - 1 $\mu$ m of stroke
  - 3mrad tip/tilt
- <10nm RMS Mirror segment Flatness through range of motion
  - Epi-Poly fabrication process developed fro Mirror segments





### **Device Fabrication Process**

Start with silicon wafer coated with Nitride dielectric layer

Deposit & pattern polysilicon actuator electrodes

Deposit sacrificial PSG layer and pattern actuator anchors

Deposit 2<sup>nd</sup> polysilicon layer to form actuators





Grow thick Epi-Poly to form mirror layer



Polish Epi-Poly and pattern hexagonal mirror segments and anneal



HF Release and apply reflective coating



### Mirror Segment Surface Figure



Hex segment : Poly-Si



Hex segment : Epi- Poly



Hex segment : Poly-Si (curvature removed)



Hex segment : Epi-Poly (curvature removed)





**Condition III** 

Condition IV



### **Tip/Tilt/Piston DM Development Results**



# <u>Tip/Tilt/Piston DM Development Results</u>

• Epi-Poly process results in:

BOSTON

MICROMACHINES

- Wider operational temperature range
- Less sensitive to stresses of reflective films
  - Allows for protected Ag and dielectric coatings
- Improved surface figure by removing print-thru





#### Effect of Temperature on Gold Coated MEMS SLM Segment Flatness



Fabrication processed developed in this effort to be integrated into commercial DMs





### DM Characteristics:

• 60mm Aperture

BOSTON

- 1000 control points
- 5nm RMS surface figure

### Technology Developments:

- Anodic bonding process of MEMS mirror structure
- Thru-Wafer Interconnects



## **DM Fabrication Process Flow**

- Same architecture as BMC Surfacemicromachines polysilicon DMs
- Three 100mm wafers
  bonded together
  - One Si wafer with thruwafer contacts
  - 2 SOI wafers
- 5µm thick patterned Pyrex film used for bonding
- Pyrex Actuator anchors and mirror posts



# Large Aperture MEMS Deformable Mirrors

 Fabrication Process demonstrated in Phase I

BOSTON

MICROMACHINES

- Main DM fabrication challenges:
  - Deposition of anodically bondable film
- Thru-wafer via array fabricated



**Actuator Deflection** 

Voltage, V



### <u>Summary</u>

Boston Micromachines Corporation is advancing and commercializing MEMS deformable mirror technology to meet Adaptive optic needs in Astronomy, Laser Comm, microscopy, and biomedical imaging through SBIR/STTR & other government programs



Thank you

**AICROMACHINES** 

Work presented funded by NASA, CFAO, NIH, GPI

