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MISSION CONTEXT AND SCIENCE
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Gravitational Wave Spectrum

Figure courtesy of Rick Jenet
Image credit: NASA

BICEP-2/WMAP/Planck Detection 2018-20? Detection 2015!

Richest set of sources 
ESA L3 (2034 launch)

Why is this important?

GW imprint on 
inflation

Stochastic 
background



ESA/NASA Activities

• Phase A to start early 2018: 
– Follows selection by SPC earlier this year 
– Intended to be competitive industrial study 
– 18 month duration 
– ESA Study Office has been established 
– Science Study Team has been established 
– US team also assembled to address decadal 
survey 

• GSFC plans: 
– Plan to produce a Breadboard by 2022 
– Currently iterating through optical/
structural/thermal design 

– Other technologies also under development
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https://www.elisascience.org/files/publications/
LISA_L3_20170120.pdf

https://lisa.nasa.gov/



MEASUREMENT PRINCIPLES
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Measurement Challenge
• Lowest order radiator is a quadrupole 

– Dipole radiation forbidden by conservation of 
momentum 

– Simplest quadrupole: a “dumbell” 

• What is to be measured 
– Time-varying strain (ΔL/L): ~10-21 /√Hz  
– 5 pm/√Hz / 5 Gm  
– signal frequencies from 10-4 to 1 Hz,  
– signal durations of months to centuries 

• Measurement concept 
– Measure distance changes between free-falling 

mirrors 
– Preferred measurement conditions: 

o A long measurement path to 
make ΔL large  

o A very quiet place to avoid 
disturbances to the test masses: SPACE!

hx Polarization

Constellation Response

h+ Polarization
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Full Spacecraft Bus DRS Detail 

Telescope 
Assembly

Optical bench 
mounted in 
Telescope 
Assembly

Payload Integrated with Bus

IMS Detail 

Payload systems 
• Interferometer Measurement System (IMS) 

• Laser 
• Telescope 
• Optical bench 

• Disturbance Reduction System (DRS) 
• Gravitational Reference Sensor (GRS) 
• µN thrusters 
• Control laws

colloidal µN thrusters
GRS

(Note: solar array not shown)
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Inter-Spacecraft Distance Measurement

• Test-mass to test-mass measured in 3 parts: 
• 2 × test-mass to spacecraft measurements (short-arm: LPF tests this) 
• 1 × spacecraft to spacecraft interferometer (long-arm) 
                    total separation = d1 + d12 + d2

d12 = ~ 2.5 x 106 km

Main interferometer

d1

Proof 
Mass

Optical Bench

LO Tx

Spacecraft 1

Quad photodetector

telescopes

Optical Bench

d2Tx LO

Proof 
Mass

Spacecraft 2

~ 1W Tx 
~100 pW Rx

~ 0.5 m ~ 0.5 m



TELESCOPE DESCRIPTION
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Telescope Functional Description/Requirements
• Afocal beam expander/reducer 

– 300 mm dia. primary 
– 2.24 mm dia. on bench 
– 134X magnification 

• Simultaneous transmit and receive 

• Conjugate pupils to minimize tilt to length coupling 
– Map angular motion of the spacecraft jitter to angular 

motion on the optical bench without lateral beam walk or 
piston 

• Smooth wavefront (λ/30) to minimize tilt to length 
coupling, also helps maximize on-axis power 
transmission 

• Dimensionally stable (path-length fluctuations 
directly compete with pm scale measurement) 

• Low back-scatter of transmit beam into receiver

Preceived / D4
primary

⇠ 1 W transmitted,⇠ 500 pW received

d1

Proof 
Mass

Optical Bench

LO Tx

~ 0.5 m
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Key Telescope Requirements

challenging

challenging
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Current 4-mirror Design

M1/M2 Angular Magnification 
reduced from 74 to 55.8X 
(25% reduction) 
M3/M4 now 2.4X,  total is still 134X 

Further M1/M2 Magnification 
reduction in process

Design residual WFE: 
8.2 nm rms

300 mm 
Entrance pupil

2.24 mm 
exit pupil

M1: OAP

M2: asphere

M3: conic

M4: conic

• Off-axis Cassegrain for stray light performance 
• Schwarzschild-style pupil extender 
• Simplified Design to reduce mirror cost, risk

Optical Bench top

Test Mass
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Extended “Bobsled”

Primary

Bench and 
mounting ring

Slots for access to 
fasteners 
(may need access 
to bench too)

Rear “keep 
out” zone

Secondary

Bobsled

Note: this is a concept. 
Details are not 
finalized.

Telescope length ~ 450 mm 
Assembly dia ~ 450 mm 
Volume ~ 30 liters 
Mass ~ 15 kg (just telescope)

Gravitational 
Reference 
Sensor 
(proof mass)
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Preliminary Thermal Modeling

View from spacePrimary baffled, secondary does not view 
cold space
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Materials choice

Silicon Carbide like properties

~ 10C 

ZERODUR® like properties

~ 12C 

�T ' 2C�T ' 20C



CHALLENGES



 Spacer Activity Objective 
– Develop and test a design for the main spacer element 

between the primary and secondary mirrors 
– M1 - M2 spacing identified as critical by tolerance analysis 
– SiC meets stability requirement with on-orbit ∆T(f) 
– On-axis Quadpod would not meet scattered light 

requirement 

SiC Spacer Dimensional Stability Demonstration

ΔT=1.5º

ΔT=~ 0º

−71º C soak

Thermal Model to Determine Test Conditions

Requirements

Can Meet Requirements at -65C
SiC Spacer  Design

SiC Spacer Design: QuadPod

∆T to length



Scattered Light Analysis

22

• Source power = 1W 
• Total power on the detector = 

6.6x10-11 W ! (barely) meets 
specification of less than 10-10

Exit pupil

Primary (M1)

Secondary (M2)

M3

M4

Intermediate 
focus

Tx (1W)

Rx 
(100 pW)

Pupil Plane Scatter Irradiance

Mirror RMS surface 
roughness (Å) MIL-STD 1246D CL

M1 15 300
M2 15 200
M3 5 200
M4 5 200

Conflicting 
accounts of on-
orbit levels

aft optics contributes most of the scattered light



Summary
• Gravitational waves enable dramatic new window on 

the Universe 
• Precision metrology application drives requirements, 

not image quality 
– Pico-meter-level pathlength stability 

– Low coherent backscattered light 
– Minimize tilt-to-length coupling 

• Requirements drive design 
– Zerodur for pathlength stability 

– Off-axis for scattered light 
– Pupil relay to minimize tilt-to-length 

• Robust, manufacturable design 
– Approximately 10 units needed
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