

Empowering the next generation of electronic and opto-electronic devices

Amorphous Nitride Anti-Reflective Coatings on PMMA Optics

Keith Jamison and Byron Zollars

Technology Days Albuquerque, NM August 26, 2008

Radiation hard multi-layer optical coatings

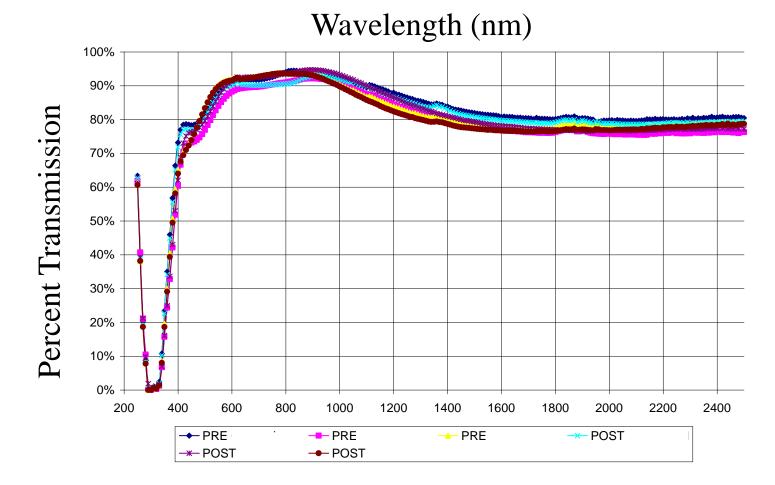
SBIR Phase I Contract NNX08CC81P Nanohmics, Inc.

Space ready multi-layer optical coatings

<u>**Problem</u>:** New optical coatings need to be developed for next generation light weight space base optics for use in programs such as NASA's EUSO observatory</u>

Phase I Goal: Demonstrate robust anti-reflective coating that can be applied to light weight optical materials such as PMMA (Plexiglas)

Nanohmics' approach: Multi-layer amorphous nitrides / oxides as optical coating


3

Advantages of Amorphous Nitrides

- Proven radiation resistance to darkening
- Multi-layers of amorphous nitrides and oxides can be used to design anti-reflection, reflective, and band pass coatings
- Deposit on room temperature substrates
- Adhere well to most materials
- Robust coating

Demonstration of Radiation Hardness

Multi-layer nitride / oxide coating exposed to ~ 10¹⁵ protons/cc flux at 20 keV, 50 keV, 100 keV and 300 keV 5

NanQhmics"

Advantages of sputter deposition

- Able to deposit optical quality films
- Reactive growth of nitrides and oxides results in relatively fast deposition rates
- Sputter process results in higher density, better adhesion coatings compared to e-beam deposition
 - Bias sample if increased density desired
- Deposit on cooled substrates
- Large established infrastructure
- Relatively inexpensive process that can handle large substrates

Nan()hmics

CVD 601 Sputter Deposition System

<u>NanQhmics</u>"

7

Amorphous Nitride / Oxide Growth

- Initial work used AIN (n=2.1), ZrO_2 (n=2.3) and SiO_2 (n=1.56)
- All materials grown using reactive sputtering
 Solid target (Al, Zr, Si, etc)
- RF power between 200 and 500 W RF
- Growth rates ~0.2-0.5 microns / hr
- All depositions on Glass and PMMA
- Measured thickness using SEM cross sections to determine growth rate
- Used 400 W RF power for initial depositions
 - Deposited on water cooled substrate holder
- No delamination noted after thermal cycling (-55 C to 75 C)

Growth Rate and Adhesion Strength

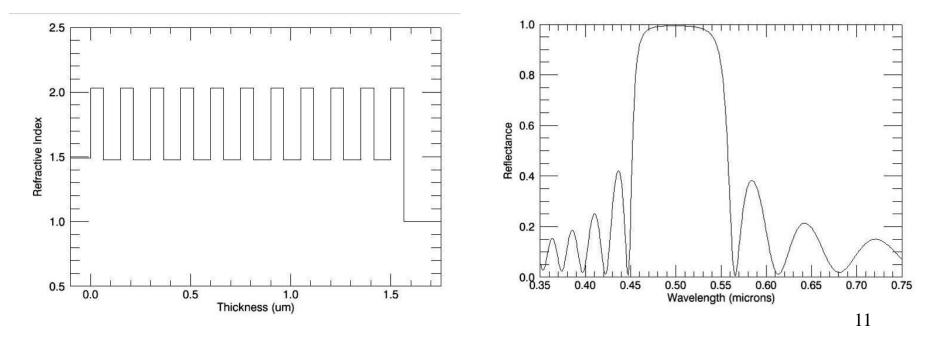
Growth rate of SiO₂, AlN, and ZrO₂ at 400 W RF power.

Material	Growth Rate
SiO ₂	6.4 nm/min
AlN	2.1 nm/min
ZrO ₂	1.15 nm/min

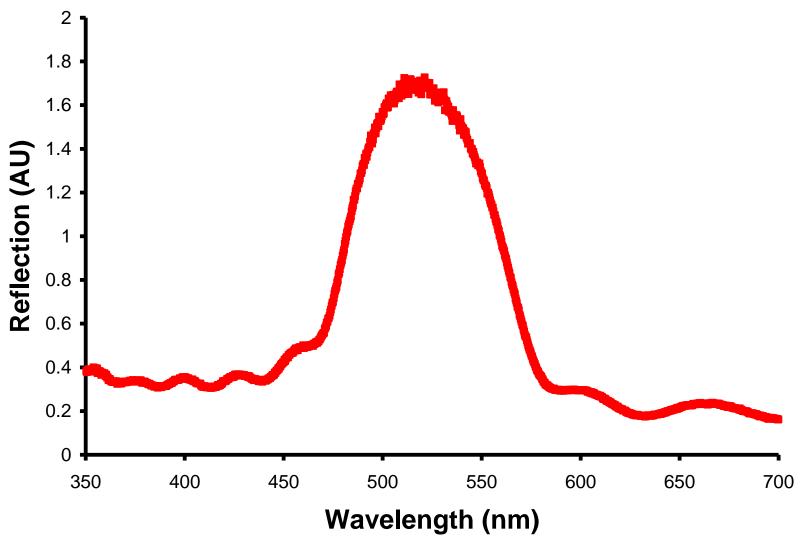
Adhesion strength to PMMA

	AlN Cooled	SiO ₂ Cooled	ZrO ₂ Cooled
Max Adhesion Force (Kg)	4.7	3.0	1.0
Max Adhesion Strength (Kg/cm ²)	83	52	18

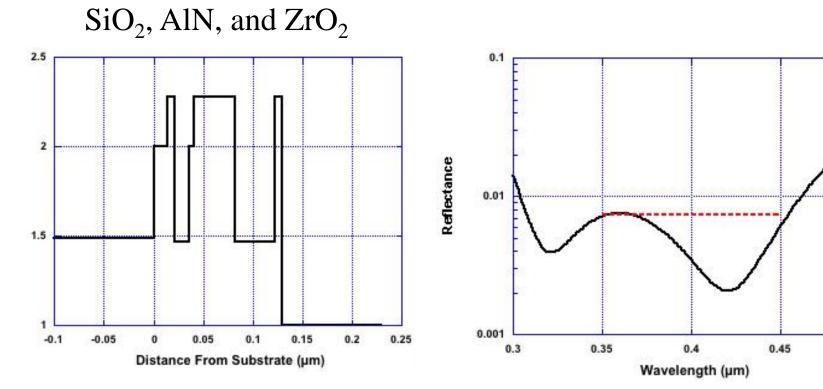
"typical" films


SiO₂ ZrO₂

10

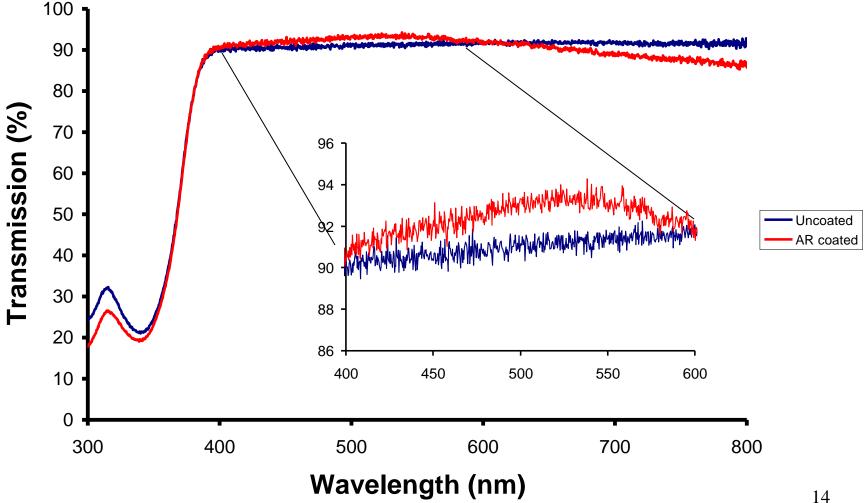

Bi-layer Reflector

- Initial design composition: AIN and SiO₂
- Optimization for single wavelength reflection to compare model with experimental results
- Reflector consisted of 6 alternating layers of 85nm of SiO₂ and 4nm of AIN


<u>Nan()hmics</u>"

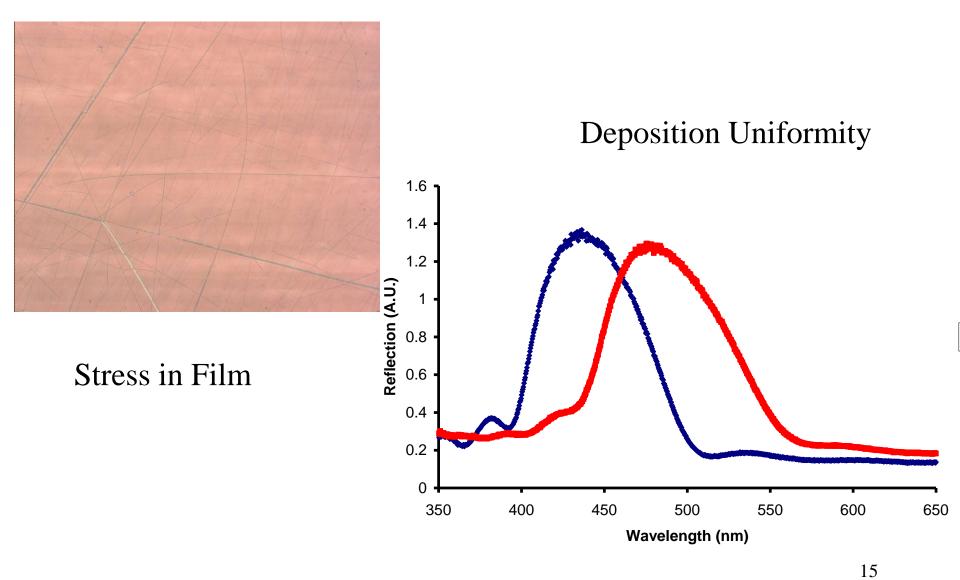
Reflection of Bi-layer Film

Anti-reflective coating



0.5

Multi-layer (AIN, ZrO₂, SiO₂) film


Transmission spectra compared to uncoated coverglass

4

Nan()hmics

Issues

Nan (hmics

Current Status / Results

- Designed a number of multi-layer coatings
 - Reflective coating in visible wavelength
 - Anti-reflective coating at visible wavelengths
 - Model used AIN, ZrO₂, and SiO₂ films
- Grew amorphous ZrO₂, AIN, SiO₂ films using reactive sputtering
- Demonstrated good adhesion of films to PMMA substrates
 - No delamination upon thermal cycling
- Fabricated and tested multi-layer coatings
 - Good comparison between theory and experiment
- Issues remain with film stress and uniformity
 - Modify pressure and power to minimize stress
 - Use uniformity shields and sample rotation to improve uniformity

Future Work

- Outlook for use of amorphous nitrides is good
- Deposition of AIN / ZrO₂ / SiO₂ or similar structure should work well
 - Examine other materials
 - e.g. HfO₂ (n=2)
 - Improve uniformity
 - Uniformity shields
 - sample rotation
 - Deposit on curved surfaces
 - Work to minimize stress in films
 - Power
 - pressure

Nan()hmics