### Mirror Tech Days 2007



Status and Full-Aperture Measurements of a Convex Asphere from the Four-Point Optical Profilometer

> Paul Glenn August 1, 2007

# Topics



- System overview
  - Overall architecture (hexapod)
  - Metrology
    - Full-aperture, or low frequency (operational)
    - Smoothness, or mid frequency (under development)
    - Micro-roughness, or high freq (under development)
  - Polishing
- Capabilities
- Assembly and first-light test results
  - Full-aperture metrology
  - Polishing removal profile
- Future plans

# Overall architecture: An integrated, in situ approach



A hexapod structure moves a "platter" in 
 The platter all degrees of freedom over the substrate

The platter integrates *all* metrology and polishing functions

August 1, 2007

Mirror Tech Days 2007

BAUER

# Low frequency metrology: The 3 basic principles of 4-point profilometry...



If a rotating platter axis intersects the optic center of curvature, then a probe on the platter nominally sees no change in standoff (convex or concave substrate!)
 If four or more probes are on a platter, then there is *some* linear combination of their readings that

 $\bullet$  (1) is insensitive to *all* rigid body motions

♦ (2) tells *something* about the shape of the test piece
A continuous measurement of this linear combination as the platter rotates yields a circular "hoop" profile

If one measures multiple "hoops" around a test piece, with each overlapping at least two others, then it is possible to "stitch" the profiles to obtain the total surface height map.

### 3 principles of 4-point profilometry...



August 1, 2007

Mirror Tech Days 2007

<u>BAUER</u>

# Summary of advantages



- Equally able to test concave and convex optics
- Completely self referencing
- Insensitive to rigid body motions of the test piece during measurements
- (Specially developed laser gauge probes provide absolutely reliable scale factor and mm-class range)
- By replacing the laser gauge probes with coarse probes (touch probes or non-contact alternatives), the instrument can measure optics in their ground state. Thus, one metrology instrument can take an optic from generation through final polish.

BAUER

# Mid frequency metrology (to be implemented)



BAUER

Optical measurement of curvature profile, based on Bauer's Model 100 Profilometer

- Probe is placed on same "probe circle" as the 4point sensor probes
- Accuracy ~ 1-2 Angstroms over 25 mm

# High frequency metrology (to be implemented)

### BAUER



Micro-roughness
is characterized
with Total
Integrated
Scatter (TIS)

Probe is placed on the same
"probe circle" as the others

 Sensitivity ~ 1 Angstrom

#### Top: Inside of lid

# Polishing





### BAUER

 Baseline approach is Fluid Jet Polishing (FJP)

- FJP apparatus is
  incorporated on a
  bottom "lid" under
  the platter, thereby
  using the *same*hexapod
  infrastructure as the
  metrology
- This is key to our integrated, in situ approach

Bottom: Outside of lid (guard removed)

# Capabilities



- Maximum diameter of mirror with mount: 2.0 meters
- Range of testable "speeds": f-0.7 concave to f-0.7 convex
- Maximum testable diameter:
  - ◆ 1.3 meters over full f-0.7 range
  - ◆ 1.5 meters for much slower "speeds"
- Testing time: ~1 minute per "hoop" (50-200 hoops typical)

### BAUER

### Predicted ultimate performance

Predicted rms figure measurement errors using various parent f#'s, |K|=1 (parabola), and vertex displ = 0.0 m •Assumptions: •K=-1 (parabola) 30.0 •On-axis 25.0 •F-numbers examined: 20.0 - 0.7 RMS (nm) •F-5 to F-0.7 15.0 2 3 - 5 •Diameters examined: 10.0 •Zero to 2.5 meters 5.0 •Current machine is 1.3 meters 0.0 0.5 0 1.5 2 2.5 Test piece diameter (m)

## Assembly...





## Assembly...







### First-light test article



Convex
Uncoated
f-2.3
43-cm diameter

BAUER

Many isolated surface defects

### Scanning demonstration





August 1, 2007

### BAUER





Three independent, centered hoops to show repeatability (~1.6 nm rms) (note the 3 humps, ~0.1 micron – they agree well with FEA of self weight)  Superposition of fourth hoop, taken after *rotating* test piece by 68.2 degrees

August 1, 2007

### BAUER



Result of telling *software* to *derotate* fourth scan by 68.2 degrees

 Repeatability essentially unaffected

#### August 1, 2007

### BAUER



- Full-surface scan (200 hoops stitched together)
- Pointillated views of the discrete hoop data points
- Plots differ only in vertical scale
- Note the three humps from self-weight deflection

August 1, 2007



Another 200-hoop scan of the same piece, tipped by 3 degrees to demonstrate that the gravity direction does not induce a systematic measurement error

August 1, 2007

Mirror Tech Days 2007

BAUER

### BAUER



Demonstration of the software's ability to interpolate the stitched data onto a rectangular grid

August 1, 2007

# Polishing wear profile

### BAUER



- The first Fluid Jet Polishing (FJP) trials gave a very smooth, symmetric, Gaussian-like wear profile
- Full-width half max (FWHM) of 6 mm closely matched the jet size, which is easily variable
- There was no noticeable increase in roughness after three waves of removal
- Process parameters need optimizing, but this first result shows promise

August 1, 2007

### Future plans



Continue validation analyses on current test article

- Obtain and test a larger convex test article, with a pedigree, for comparison
- Implement mid frequency / high frequency metrology head
- Continue polishing implementation