Tools for visualizing the solution space for freeform three-mirror anastigmats

Eric Schiesser ${ }^{1}$, Jonathan Papa ${ }^{1}$, Kevin Thompson²,1, and Jannick Rolland ${ }^{1}$ ${ }^{1}$ Institute of Optics, University of Rochester

${ }^{2}$ Synopsys

NASA Mirror-tech Days - 10-12 November 2015

Outline

1. Introduction to TMA design
2. General solution for single-conic axial TMA
3. Creating a useful program for visualizing TMA space
4. Surveying TMA solution space
5. Conclusion

What is a conventional TMA?

TMA = Three Mirror Anastigmat

A co-axial three mirror system corrected for the primary $3^{\text {rd }}$ order ($4^{\text {th }}$ order in wavefront) aberrations (spherical, coma, and astigmatism).

$$
W_{040}=0, W_{131}=0, W_{222}=0
$$

- A system with 2 spherical mirrors and 1 conic mirror can achieve this correction.
- As Rakich shows [1, 2], a subset of these systems also has a flat field (no Petzval curvature)
- Many of these solutions have significant obscurations
- To reduce obscurations, use field and aperture bias to select off-axis sections of co-axial mirrors
- Such surfaces may become sensitive to tilts and decenters

Cook [5]

What is a freeform "TMA"?

- A freeform TMA typically begins from an obscured coaxial TMA design, and then the surfaces are tilted to avoid obscurations
- Tilting surfaces introduces, primarily, large amounts of astigmatism and coma
- To correct the aberrations induced by tilting the surfaces, we need more degrees of freedom
- Zernike surfaces
- NURBS
- 2D Chebyshev polynomials
- 2D Forbes polynomials
- Radial basis functions
- The resulting system is no longer a proper "TMA" type design, as the $4^{\text {th }}$ order wavefront aberration coefficients
 are no longer zero, but instead are used to balance higher order terms ("reflective triplet" is more accurate)

TMA solution space maps

The Three Mirror Anastigmat design space for 2 spheres and 1 conic has been mapped out by Rakich [1, 2]

Burch Plate Equations

- Solution is based on the "plate diagram" by Burch [3]
- 2 spherical and 1 conic mirror creates a total of 4 "plates"
- Solve for system parameters by substituting them into the plate equations, which are then solved
- By fixing the radius of the primary, and given t_{1} (primary-tosecondary distance) and c_{2} (secondary curvature), the equations to correct spherical, coma, and astigmatism result in a cubic equation for c_{3} (tertiary curvature)
- The solution space is then mapped out on a $t_{1}-c_{2}$ plane (figure to the right)
- Due to the cubic equation, there are 3 solutions for each of 4 geometries, for a total of 12 solution maps.

$$
\begin{gathered}
W_{1}+W_{2}+W_{3}+W_{4}=0 \\
W_{1} x_{1}+W_{2} x_{2}+W_{3} x_{3}+W_{4} x_{4}=0 \\
W_{1} x_{1}^{2}+W_{2} x_{2}^{2}+W_{3} x_{3}^{2}+W_{4} x_{4}^{2}=0
\end{gathered}
$$

TMA solutions - conic on primary (AS1)

\longleftarrow Positive Primary

Negative petzval
No Solution
Positive Petzval

Negative Primary

TMA solutions - Conic on secondary (AS2)
 AS2SB Solution, positive primary

Positive Primary

- Negative petzval No Solution
Positive Petzval

Negative Primary

Purpose of this study

Purpose:

To enable the design of large aperture, wide field-of-view, unobscured telescope designs:
4° circular full FOV
300 mm aperture
Broad spectral coverage (UV, Vis., NIR, FIR)
Compact footprint

Method:

Survey solutions to select candidate starting points for further freeform study, including solutions with negative primaries not considered in Rakich's study

Creating a useful GUI for visualizing Rakich TMA solutions

- Programmed in MATLAB
- 3 solution maps to cubic Rakich equations are plotted on top
- Select which solution(s) to plot/update - Select which surface is aspherized
- Select the sign of the primary mirror - Select which cubic solution (A, B, C)
- Interactively change the plot regions and plot resolution by typing the range directly or selecting the region of interest with the mouse
- Select a point on the plots to display the layout (using CODE \vee ® ${ }^{\circledR}$ via COM interface)
- Display the Y-Ybar plot of the selected point, with bounding box lines

AS1SC-N - flat field region

AS1SC-N - Region 2 - Flat Field

CeFO

AS1SC-N - Region 2 - Flat Field

Survey results

- This survey showed that most of these solutions are outside of the range of feasibility (as Rakich also found)
- Extreme distances between mirrors
- High curvatures
- Large apertures
- We can apply filters to show the regions which have reasonable solutions
- Rakich did not consider solutions with negative primary mirrors because of their obscurations, but as we know from Pathfinder 1 [4], freeform solutions with negative primaries are possible.
- There are multiple candidate solutions for further freeform study with negative primaries

AS1 Filtered

AS1SC Solution, negative primary

Positive Primary

Negative Primary

AS2 Filtered

AS2SA Solution, negative primary

AS2SC Solution, negative primary

Positive Primary

Negative Petzval
No Solution
Positive Petzval
t_{1}, t_{2}, t_{3} filter
c_{1}, c_{2}, c_{3} filter
Both filters

Negative Primary

AS2SB Solution, positive primary

$\mathrm{t}_{1}(\mathrm{~m})$

Interesting solutions from this study

Resembles a Schwarzschild with a Schmidt plate

AS1SC-P - Region 2 - Flat Field

AS1SB-N

Similar to Fuerschbach type

AS2SA-N - Region 1

Variation on Fuerschbach

Interesting solutions from filters

AS1SA-P

AS2SC-P

Conclusion

- Using Rakich's equations for 2 spheres, 1 conic type TMAs, we have created a program and GUl to survey these solutions (extending to negative primaries)
- Using this tool, we have surveyed the design space for co-axial TMAs while applying filters applicable for transforming those solutions into freeform TMAs
- From these results, we selected interesting forms for further freeform study, including both positive and negative primary solutions
- Comparison of results from the freeform study is in progress

References

[1] Rakich, A. and Rumsey, N. "Method for deriving the complete solution seet for three-mirror anastigmatic telescopes with two spherical mirrors." JOSA A 19.7 (2002): 1398-1405.
[2] Rakich, Andrew. A Complete Survey of Three-mirror Anastigmatic Reflecting Telescope Systems with One Aspheric Surface: An M. Sc. Thesis, University of Canterbury. Diss. University of Canterbury, 2001. [3] Burch, C. R. "On the optical see-saw diagram." Monthly Notices of the Royal Astronomical Society 102 (1942): 159.
[4] Fuerschbach, Kyle, et al. "Assembly of a freeform off-axis optical system employing three φ-polynomial Zernike mirrors." Opt. Lett 39.10 (2014): 2896-2899.
[5] Cook, Lacy G. "Method and apparatus for receiving optical signals.'" U.S. Patent No. 4,834,517. 30 May 1989.

Acknowledgements

NSF I/UCRC Center for Freeform Optics (CeFO) www.CenterFreeformOptics.org

Thanks to Synopsys for the student license of CodeV ${ }^{\circledR}$

AFFRE

- Microsoft

Ball Aerospace

ZADINX

PerkinElmer ${ }^{\circ}$
For the Better

- Oculus VR

