

High Spatial Resolution Metrology using Sub-Aperture Stitching

Stephen O'Donohue, Paul Murphy and <u>Marc Tricard</u> 1040 University Avenue, Rochester, NY • USA +1 (585) 256-6540 • tricard@qedmrf.com • www.qedmrf.com

Acknowledgements: Scott Antonille – NASA Goddard

Asphere metrology Background

- SSI®:
 - Sub-aperture Stitching Interferometry
 - Introduced in 2004
 - Measure flats & spheres with increased aperture size, accuracy and resolution
 Resolution
- SSI-A[™]:
 - Asphere metrology without null lenses
 - Commercial reality as of Oct. 2006


```
ithout null lenses
of Oct. 2006
Aperture
size
Aspheric
departure <sup>2</sup>
```

Interferometer Resolution and PSD QED Background

- In the past, common metrics such as "Peak to Valley" (PV) and "rms" were sufficient for precision optics.
- Today's more challenging applications require a more rigorous specification protocol.
- Power spectral density (PSD) is an increasingly popular method of quantifying a signal within a specific spatial band.
- One question (in)frequently asked Can this instrument (interferometer) actually measure the band of interest?

the final word in precision finishi

Fizeau Interferometer Resolution Same optic, different interferometers...

...why does this happen?

Fizeau Interferometer Resolution Common influences

- In practice, there are 3 main issues that limit a Fizeau interferometer's true resolution:
 - Pixel scale # of pixels/unit length (1K x 1K CCD are now common)

Interferometer Transfer Function (ITF)

System Bias (reference wave)

- From consumer cameras to commercial interferometers, detector technology has advanced dramatically over the last decade.
- 1 Megapixel (1K x 1K) CCD's are now common, if not standard offerings on commercially available interferometers.
- On a 6" (150 mm) aperture, that yields a *pixel* scale of 0.15 mm/pixel.

CCD's & Pixel Scale

Sampling range for common measurement instruments:

- A 6" Fizeau w/ 1K camera yields a pixel scale of 0.15 mm/pixel.
- Nyquist sampling requires a minimum of 2 pixels/cycle.
- Can we actually measure 0.3 mm features?

Interferometer Transfer Function **PSD Calculation Process** Technologies

1. 3-d Phase map (Z(x,y))

0.800

2.500

0.000

0.00 0.05 0.10 0.15 0.20

0.000

0.25 0.30 0.35 0.40 0.45 0.50

Cycles per mm

the final word in precision finishing

Interferometer Transfer Function QED

Spatial Frequency (1/mm)

*The low magnification (6") system's ITF drops to the noise floor at only 20% of the Nyquist limit!

the final word in precision finishing

- <u>Goal:</u> We want to increase the lateral resolution without sacrificing low spatial frequency data.
- <u>Solution</u>: Use higher magnification test in conjunction with sub-aperture stitching.

• Example: High precision asphere:

Null test (conic w/ retro-sphere)

SSI-A measurement

• Example: High precision asphere:

Interferometer Resolution Reference wave bias has its own PSD!

= Test + Reference

Therefore...

= PSD_{Test} + PSD_{Reference}

Reference wave bias Must calibrate

*The reference wave will ADD BIAS within the measurable frequency band. For PSD specifications, calibration is a must!

Reference wave bias *Calibration Methods*

Accurate mid-frequency measurement requires <u>in-line</u> reference calibration The SSI® can calibrate it <u>accurately</u> and <u>automatically</u>!

Typical Instrument Transfer Functions(ITF) of standard metrology tools on the <u>large aspheric surface</u>

2.Low Spatial Frequency Roughness (LSFR) Measurement Tool : MFA-400

Features

Special platform and software by QED's SSI®
Special interferometer head by ZYGO
Spatial frequency range: <u>0.3-5.0</u> cycles/mm
Uncertainty:<u>0.1nmRMS for mild asphere</u>
Uncertainty:<u>0.2nmRMS for steep asphere</u>
Automatic measurement control software

How does it work? (conceptual)

Performance of MFA-400

(d)Cross test of aspherical part with different TS lens

-Same aspheric part is evaluated with different TS lenses (f/14.9 and f/28.3 converger) and compared as a cross test

-Both f/14.9 and f/28.3 are the stitched measurements -Both TS reference surface are calibrated by modified random averaging method

Cross test difference is 0.18nmRMS(Target:0.2) for steep asphere

- Demanding applications require high resolution metrology.
- An interferometer's true resolution are limited by the CCD, ITF, and bias sources (reference wave, retrace, etc).
- QED's Sub-aperture Stitching Interferometry products are able to stretch the ITF (while preserving low frequency data), and automatically calibrated systematic errors.
- The MFA 400 is an extremely high precision stitching interferometer designed specifically for measuring mid-spatial frequency errors on aspheres.

High Spatial Resolution Metrology using Sub-Aperture Stitching

Stephen O'Donohue, Paul Murphy and Marc Tricard 1040 University Avenue, Rochester, NY • USA +1 (585) 256-6540 • tricard@qedmrf.com • www.qedmrf.com

Acknowledgements: Scott Antonille – NASA Goddard