4) Technology

Dynamic Interferometry: Applications of High Speed Interferometry

Michael North Morris
4D Technology Corporation

Mirror Tech Days 2017

- Dynamic Interferometry
- High Speed Interferometer
- JWST Testing
- Beyond JWST
> Combine High Speed with ESPI
> New Interferometer Status

Dynamic Interferometry

Temporal Phase-Shift Interferometry

$$
l_{3}(x, y)
$$

120 milliseconds for acquisition

$$
\operatorname{Tan}(\phi(x, y))=\frac{I_{4}(x, y)-I_{2}(x, y)}{I_{3}(x, y)-I_{1}(x, y)} \quad \operatorname{Height}(x, y)=\frac{\lambda}{4 \pi} \phi(x, y)
$$

Spatial Carrier Dynamic Sensor.

Sensor

- Convenient to implement
- FT or convolution approach
- Off-axis beams - can cause retrace
> Requires calibration
- $\lambda / 10$ flats special optics
- Special Data Processing
M. Kuchel, " The new Zeiss interferometer," SPIE Vol. 1332 Optical Testing and Metrology III: Recent Advances in Industrial Optical Inspection, p655-663, 1990

Polatization Phase Shif tmethod

Use polarizer as phase shifter

Circular polarized beams $(\theta)+$ linear polarizer $(\alpha) \Longrightarrow I=I_{T}(1+\gamma \operatorname{Cos}(\theta+2 \alpha))$
Phase-shift depends on polarizer angle

Kothiyal and Delsile, (1985)

Simultaneous polarization phase-shift

 - micro-polarizer camera

- Array of oriented micropolarizers
- Similar to RGB color mask
- On-axis imaging, broadband wavelength
- Dynamic Interferometry ${ }^{\text {TM }}$
"Precision measurement in dynamic environments"
US Patent 7,230,719 (2004)

Dynamic Interferometriy

Nanoseconds for acquisition!

High Speed Interferometer

Laser

On-axis imaging - works well with fast optics, zoom

- Frame Rate VS FOV

Frame Size	Frame Rate (fps)
1024×1024	500
640×480	1,800
400×300	4,000

Frame rates greater than 10,000 fps achievable with smaller FOV

High-Speed Interferometer Capture

- Data typically collected for 10 seconds for each measurement.
- For each measurement approximately 4.2 GB of data collected.
- The limit on how long a measurement can run is determined by the amount of memory in the data acquisition computer, 20 GB in this instance.

Air Stream, 525 Frames/Second ond
 园

| 11 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Water Surface 525 Frames/Second

JWST Measurements

Vibrational Strain Meastrements.

- Vibrational measurements can validate structural modeling and ensure good performance in flight
- Exo-planet imaging will require extreme stability
- 5000 fps dynamic interferometer used to characterize vibration

Single High Speed Interierometer Measurement-्वी

Raw Frame

Instantaneous Phase-Shifted
Interferograms

Reconstructed
Wrapped Phase

Vibrational Strain Measurements -

COMPARISON
OF SSDIF MEASUREMENT TO XRCF MEASUREMENT

SSDIF compensated for:

- RoC actuation residual

XRCF compensated for:

- gravity tilt on test stand
- reference sphere measurement
- window vacuum effects
- CGH substrate error
- RoC actuation residual
- CGH to mirror spacing error

Figure

Saif, et al., "Nanometer level characterization of the James Webb Space Telescope opto-mechanical systems using high-speed interferometry," Appl. Opt. 54 (2015)

Measurement Res?/is

- Interferometer is capable of tracking large absolute motion (i.e., piston) of the mirror's entire surface over orders of magnitudes of wavelengths displacement.
- Preliminary tests have shown it to be capable of measuring dynamic effects on the level of tens of picometers reliably.
- This measurement capability is very important for future space optics and an interferometer combining the high speed capability and the ESPI is currently being designed and constructed.

Beyond JWST - Combine High Speed Interferometer with ESPI

4D Technology Corporation

$\mathrm{I}_{21}, \mathrm{I}_{22}, \mathrm{I}_{23}, \mathrm{I}_{24}$

- Deformed state

- Nominal state

Unwrapping

$$
O P D=\frac{-}{2} \operatorname{ArcTan}\left(\frac{\left[\begin{array}{ll}
I_{23} & I_{21}
\end{array}\right]\left[\begin{array}{ll}
I_{14} & I_{12}
\end{array}\right]+\left[\begin{array}{ll}
I_{11} & I_{13}
\end{array}\right]\left[\begin{array}{ll}
I_{24} & I_{22}
\end{array}\right]}{\left[\begin{array}{lll}
I_{11} & I_{13}
\end{array}\right]\left[\begin{array}{ll}
I_{21} & I_{23}
\end{array}\right]+\left[\begin{array}{ll}
14 & I_{12}
\end{array}\right]\left[\begin{array}{ll}
24 & I_{22}
\end{array}\right]}\right)
$$

Provides differential measurement of diffuse and specular surfaces.

Structural/Thermal Strain Measurements

- Thermal response of structure key in maintaining alignment in space.
- Speckle interferometry - change in shape of diffuse structures.
- Requires significant laser power

100's nm/days

Babak Saif, et al. "Measurement of large cryogenic structures using a spatially phase-shifted digital speckle pattern interferometer," Appl. Opt. 47, (2008)

High Speed ESPI Layout

Reference Pickoff In Fiber

- System Build Complete
- Software Release Candidate in Testing
- Capability Evaluation in Process
- Quality Testing This Month

Sujport Structure

Interference Pattern

Wrapped Phase

Surface Change

- High Speed Interferometry On JWST
- Uses Dynamic Interferometer
- Preliminary Tests Measured Dynamic Effects On the Level of Tens of Pico-meters
- Next Generation
- Combine High Speed Interferometer with ESPI Measurements
- Initial System Build Complete
- System Evaluation in Process

