Laser Micromachining of Optical Structures and Surfaces

Technical Monitor: Dr. Douglas Deason
evelopment of a Laser Micromachining Process Fabrication of SiC Mirrors

Mound Laser \&
Photonics Center, Inc.
Ron Jacobsen (P.I.)
Larry Dosser
Ben Scott
Jeremey Pitz

Wright State
University
A.A. Goshtasby (co P.I.)
Jerome Brittain
Dustin Smith

- Gain practical understanding of pulsed laser ablation of SiC materials being considered for mirrors.
- Ablation data
- Roughness
- Machining quality
- Laser control issues
- Practical ablation rate
- Develop laser micromachining algorithms for arbitrary shaping of SiC blanks (e.g. aspheres)
- Guidance from metrology
- Develop laser micromachining workstations for practical mirror shaping.
- Scan head guidance.
- Direct focus w/ translation/rotation stage.
- Picosecond pulses expected to give direct ablation that avoids leaving extended heat affected zone.
- SuperRAPID by Lumera
- Pulse duration ~10-14 ps
- Wavelength choices 1064, 532, 355 nm
- Pulse frequency from $10-640 \mathrm{kHz}$
- Burst mode option releases selected number of pulses at 50 Mhz with each trigger of the laser.
- Nominal max power $=10 \mathrm{~W}$ (a 50 W version will be available soon.)
- Experimentation focused on two SiC materials
- Trex SiC: relatively smooth initially
- Poco SuperSiC-2: very rough, but easy to make near net shape

תס ות
 Ablation Curves for SiC

- Ablation/pulse characterized by logarithmic fit. (Bayes Law)
- Threshold fluence, $F_{t} \sim 0.2-0.3 \mathrm{~J} / \mathrm{cm}^{2}$.
- Higher frequency pulses remove more material local heating due to pulse overlap
- Ablation/pulse is comparable for Trex and Poco materials.

תD ות
 Burst Mode Ablation

- Burst mode releases multiple pulses at 20 ns intervals (~100\% overlap).
- Tests performed at 5-burst.
- The average pulse in a burst removes more material than a lone pulse
- Heating by initial pulses in burst probably facilitates ablation by later pulses in burst.

- Picosecond ablation at $>2 \mathrm{~J} / \mathrm{cm}^{2}$ leads to pin holes.
- Number of pin holes increases with number of passes by the laser.
- Observed in both form in both Trex and Poco.
- Cause of pin holes not known. Perhaps local impurities vaporize to create a bubbles.

תD ות
 Surface Roughness

With picosecond ablation

- Fluence $>4 \mathrm{~J} / \mathrm{cm}^{2}$ increases roughness
- Fluence $<4 \mathrm{~J} / \mathrm{cm}^{2}$ can mildly reduce roughness
- Effects growth with total depth of ablation (i.e., \# of laser passes).

Examples of roughness of Trex SiC specimen as a function of fluence and depth of ablation.

М॥I D

 Smoothing of Poco SiC

 Smoothing of Poco SiC}

Original surface

Ablated surface
Fluence $=3 \mathrm{~J} / \mathrm{cm}^{2}$
To depth of $40 \mu \mathrm{~m}$

Even ablation of Poco SiC

- changes overall surface height variation only slightly,
- greatly smoothes the micro-texture.

חס ות
 Laser Control

Overmachining may be caused by

- Pulse Pile Up
- High pulse overlap during acceleration of guidance mirrors
- Exaggerated at high pulse frequency
- Can be mitigated by allowing extra acceleration distance, at the cost of extra machining time
- First Pulse
- First pulse(s) in a machining pass are larger due to energy build up in laser amplifier
- Exaggerated at high pulse frequency
- Mitigation
- Block first pulse
- Distrubute first pulses over surface
- Work at lower pulse frequency

Practical Ablation Rate

The highest useful ablation rate determined by consideration of the effects presented

- Maximum ablation rate
= Ablation per pulse \times Frequency
- Avoidance of pin holes
- Avoidance of worsening roughness
- Minimization of pulse pile up
- Minimization of first pulse

Work at high frequency, burst mode to get high removal rate even at low fluence.

Work at low frequency to avoid or mitigate these effects.

Potential Ablation Rates

Copyright © 2007 MLPC

Mircomachining Algorithm

(STTR partner contribution)

- Algorithm to generate laser path commands for machining in Cartesian coordinates complete. Polar version under development. Inputs:
- Experimentally determined material removal rate
- Pulse diameter and overlap
- Metrology data set
- Desired final shape

Output:

- Laser commands to machine near to, but not past, desired surface.
- After execution of laser machining, new metrology is taken and final shape approached more closely at lower power.

חס ות
 Example of Iterative Machining

- Commands generated by laser path algorithm machine to approach a 18 " radius spherical surface starting from flat.
- Metrology from spherically machined surface is used as input to generate commands to machine the surface further down to a parabola.

Sphere
Avg distance from target
surface $=650 \mathrm{~nm}$
$R a=370 \mathrm{~nm}$

- 18 inch radius sphere
- Ablation to sphere
- 12.5 um deep parabola

Ablation to parabola

Parabola

Avg distance from target
surface $=820 \mathrm{~nm}$
$R \mathrm{Ra}=550 \mathrm{~nm}$

Workstation Development

Final major goal of program is to develop a workstation for practical iterative machining of SiC mirrors.

- Scan Head driven workstation put into service at the start of the program to develop basic data and show proof of principle.
- 3 axis (X, Y, Z)
- Positioning accuracy ~ $20 \mu \mathrm{~m}$
- Requires coordination of scan head position/acceleration and laser triggering
- Direct Focus workstation
- Designed and built during program to address limitations of scan head workstation
- Metrology development

Direct Focus Workstation

- Integrated by JPSA
- Four axis (X,Y,Z, θ)
- Direct focus \rightarrow smaller spot
- Stages with < 2 micron accuracy
- Vision system
- 6" turntable
- Position synchronized output

- Will enable
- Greater positioning accuracy
- Elimination of laser path acceleration when working in θ.
- Room for metrology to be added at end of long X-axis.

Metrology Development

- Primary metrology method is white light interferometry. Necessary for final accuracy.
- WSU has developed a low cost metrology system, based on distortions of a cast linear shadow, that may be valuable in guiding initial iterative machining.
- Low cost
- Easy integration to workstation
- Rapid data collection
- X-Y resolution ~ $15 \mu \mathrm{~m}$
- Z resolution ~ $10 \mu \mathrm{~m}$

Conclusions

- Basic data for picosecond ablation of SiC has been collected and analyzed - appropriate regimes for operation have been identified.
- An algorithm for metrology guided specification of laser machining paths to produce arbitrary shapes has been developed.
- A demonstration of metrology guided iterative machining has shown the feasibility of shaping SiC to withing the tolerances desired - within $1 \mu \mathrm{~m}$ of figure and $<700 \mathrm{~nm}$ roughness.
- The pathway to further improvements utilizing new, more accurate laser workstation is clear.

