Laser Micromachining of Optical Structures and Surfaces Technical Monitor: Dr. Douglas Deason

evelopment of a Laser Micromachining Process Fabrication of SiC Mirrors

Technical Monitor: Dr. Lawrence Matson

Mound Laser & Photonics Center, Inc.

Ron Jacobsen (P.I.) Larry Dosser Ben Scott Jeremey Pitz Wright State University A.A. Goshtasby (co P.I.) Jerome Brittain Dustin Smith

Distribution A: Approved for Public Release. Distribution Unlimited. Copyright © 2007 MLPC for th

Program Goals

- Gain practical understanding of pulsed laser ablation of SiC materials being considered for mirrors.
 - Ablation data
 - Machining quality
 - Practical ablation rate
- Roughness
- Laser control issues
- Develop laser micromachining algorithms for arbitrary shaping of SiC blanks (e.g. aspheres)
 - Guidance from metrology
- Develop laser micromachining workstations for practical mirror shaping.
 - Scan head guidance.
 - Direct focus w/ translation/rotation stage.

Laser and Materials

- Picosecond pulses expected to give direct ablation that avoids leaving extended heat affected zone.
- SuperRAPID by Lumera
 - Pulse duration ~10-14 ps
 - Wavelength choices 1064, 532, 355 nm
 - Pulse frequency from 10 640 kHz
 - Burst mode option releases selected number of pulses at 50 Mhz with each trigger of the laser.
 - Nominal max power = 10W (a 50W version will be available soon.)
- Experimentation focused on two SiC materials
 - Trex SiC: relatively smooth initially
 - Poco SuperSiC-2: very rough, but easy to make near net shape

Ablation Curves for SiC

- Ablation/pulse characterized by logarithmic fit. (Bayes Law)
- Threshold fluence, $F_t \sim 0.2-0.3 \text{ J/cm}^2$.
- Higher frequency pulses remove
 more material –
 local heating due to
 pulse overlap
- Ablation/pulse is comparable for Trex and Poco materials.

Burst Mode Ablation

- Burst mode releases multiple pulses at 20 ns intervals (~100% overlap).
- Tests performed at 5-burst.
- The average pulse in a burst removes more material than a lone pulse
- Heating by initial pulses in burst probably facilitates ablation by later pulses in burst.

Pin Holes

- Picosecond ablation at
 > 2 J/cm² leads to pin
 holes.
- Number of pin holes increases with number of passes by the laser.
- Observed in both form in both Trex and Poco.
- Cause of pin holes not known. Perhaps local impurities vaporize to create a bubbles.

With picosecond ablation

- Fluence > 4 J/cm² increases roughness
- Fluence < 4 J/cm² can mildly reduce roughness
- Effects growth with total depth of ablation (i.e., # of laser passes).

Examples of roughness of Trex SiC specimen as a function of fluence and depth of ablation.

Copyright © 2007 MLPC

Smoothing of Poco SiC

Copyright © 2007 MLPC

Laser Control

RIGHT STATE INIVERSITY OVE

Overmachining may be caused by

- Pulse Pile Up
 - High pulse overlap during acceleration of guidance mirrors
 - Exaggerated at high pulse frequency
 - Can be mitigated by allowing extra acceleration distance, at the cost of extra machining time
- First Pulse
 - First pulse(s) in a machining pass are larger due to energy build up in laser amplifier
 - Exaggerated at high pulse frequency
 - Mitigation
 - Block first pulse
 - Distrubute first pulses over surface
 - Work at lower pulse frequency

- The highest useful ablation rate determined by consideration of the effects presented
- Maximum ablation rate
 = Ablation per pulse x Frequency
- Avoidance of pin holes
- Avoidance of worsening roughness
- Minimization of pulse pile up
- Minimization of first pulse

Work at high frequency, burst mode to get high removal rate even at low fluence.

Work at low frequency to avoid or mitigate these effects.

Potential Ablation Rates

Mircomachining Algorithm

(STTR partner contribution)

- Algorithm to generate laser path commands for machining in Cartesian coordinates complete. Polar version under development. Inputs:
 - Experimentally determined material removal rate
 - Pulse diameter and overlap
 - Metrology data set
 - Desired final shape

Output:

- Laser commands to machine near to, but not past, desired surface.
- After execution of laser machining, new metrology is taken and final shape approached more closely at lower power.

Copyright © 2007 MLPC

Example of Iterative Machining

Final major goal of program is to develop a workstation for practical iterative machining of SiC mirrors.

- Scan Head driven workstation put into service at the start of the program to develop basic data and show proof of principle.
 - 3 axis (X,Y,Z)
 - Positioning accuracy ~ 20 μ m
 - Requires coordination of scan head position/acceleration and laser triggering
- Direct Focus workstation
 - Designed and built during program to address limitations of scan head workstation
- Metrology development

Direct Focus Workstation

- Four axis (X,Y,Z,θ)
- Direct focus \rightarrow smaller spot
- Stages with < 2 micron accuracy
- Vision system
- 6" turntable
- Position synchronized output
- Will enable
 - Greater positioning accuracy
 - Elimination of laser path acceleration when working in θ .
 - Room for metrology to be added at end of long X-axis.

Metrology Development (STTR partner contribution)

- Primary metrology method is white light interferometry. Necessary for final accuracy.
- WSU has developed a low cost metrology system, based on distortions of a cast linear shadow, that may be valuable in guiding initial iterative machining.
 - Low cost
 - Easy integration to workstation
 - Rapid data collection
 - X-Y resolution ~ 15 μ m
 - Z resolution ~ 10 μ m

- Basic data for picosecond ablation of SiC has been collected and analyzed – appropriate regimes for operation have been identified.
- An algorithm for metrology guided specification of laser machining paths to produce arbitrary shapes has been developed.
- A demonstration of metrology guided iterative machining has shown the feasibility of shaping SiC to withing the tolerances desired - within 1 μm of figure and < 700 nm roughness.
- The pathway to further improvements utilizing new, more accurate laser workstation is clear.