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I. Introduction & Background 
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Future Large Space Telescopes 
• How to build aperture > 10 meters? 

– Segmented primary mirror 
– Many segments 
– Multiple launches 
– On-orbit autonomous assembly 

 
• Mirror segments 

– Lightweight 
– Identical (nominally spherical) 

• Lower cost 
• Redundancy 
• Ease of manufacture and test 
• BUT:  Curvature errors across array 

– Deformable capability 
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Demonstration of Key Technologies 
• Collaboration between Caltech, Univ. of Surrey, JPL 
• Small telescope mission 

– Lightweight adaptive mirrors 
• Each 10 cm diameter 
• Mounted on Cubesats (“Mirrorsats”) 
• Lightweight and deformable 

– Prime focus design 
• Deployable detector package (operating in VISNIR) with WFS 

– Autonomous assembly and docking 
• Segments detach, reconfigure and reattach 
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II. Mirror Design 
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Basic Mirror Concept 

• Thin shell laminate 
– Built up on polished mold 

• Replication 
– Lightweight, stiff substrate 
– Active materials 

• Piezoceramics (e.g. PZT) 
• Electrostrictives (e.g. PMN-PT) 
• Electro-active polymers (e.g. PVDF) 

 
 

• Surface parallel actuation 
– In-plane strains create mirror 

curvature 
– Thin, low areal density 

 
 

Activated layer 

Mold 

Deposited layers 

Reflective surface 

V 
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• Alternating layers of electrodes and active material 

• 90 (fine pattern) + 16 (coarse pattern) channels 

• Mirror < 5 grams (0.6 kg/m^2) 

 

 

 

 Piezoelectric 
membrane layers 

Coarse electrodes 

Reflective coating (underside) 

10 cm Si wafer 

Mirror Design 

Mounting PCB 

Fine electrodes 

Ground 
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Mirror Control Architecture 

Wavefront 

• Single high 
voltage signal 
multiplexed into 
N channels 

• Trades 
bandwidth for 
mass, power, 
volume 
 

 
 
 

Multiplexer Prototype (42 chnls, +/- 500V) 

10 cm 

DAC 
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Mirror Control Architecture 
• Single high 

voltage signal 
multiplexed into 
N channels 

• Trades 
bandwidth for 
mass, power, 
volume 
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Thermal Control 
• Mirror temperature is biased cold 

— Pointed towards cold background 
— Isolated  thermally from S/C 

• Monitor temperature 
― Using thermocouple, or 
― By measuring film dielectric constant 

• Superimpose AC RF signal on top of DC shape 
control signal 
― Polymer would absorb the RF electrical 

energy as heat (capacitors look like shorts at 
high frequency) 

― ~100 MHz, ~0.1 Watts per mirror 
― Piezoelectric response negligible at high 

frequency 
― Modulate AC signal as required for 

temperature control 
  

 

Furukawa et al, 1980 
Ferroelectric Behavior in the Copolymer of 
Vinylidenefluouride and Trifluouroethylene 

(55/45 VDF/TrFE) 
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Predicted Mission Performance 
• Errors across aperture 

– Due to common shape (spherical) 

• 1.2m FL hyperboloid (R-C primary) desired 

• Scale is in 633 nm reference wavelengths 

 

 
Initial Error Corrected Error 

RMS = 6.1 waves RMS = 0.17 waves 
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III. Mirror Fabrication 
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General Fabrication Process 
1. Double side polished Si wafers 
2. Grow high stress thermal oxide 

coatings 
3. Add layers of active materials and 

electrodes 
– Active material used:   

• P(VDF-TrFE) electroactive polymer 
– Electrode materials 

• Au or Al 

4. Pole active material layer(s) 
5. Etch back oxide to achieve nominal 

curvature 
6. Add reflective coating 

Si wafer 

Piezo 

Electrodes 

Piezo 

Electrodes 

Electrodes 
SiO2 

SiO2 
Al coating 
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Peeled Polymer Laminate 

Front 

Back 

On Wafer 
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IV. Mirror Testing 
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Freestanding Film 

• Two continuous (blanket) electrodes 

• Bonded to simple ring around edge 

• Measurement 
– Deflection of center point 

 

V 
V 

δ 

Laser 

Electrodes 

Piezo (25 um) 

Electrodes 

Ø80 cm 
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Cycled at 2200V 
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Linear response 

Permanent  
deformation! 
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Operating Response 
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Film on Wafer 

• Attached to 200 micron thick wafer 

• 3D Digital Image Correlation (DIC) 

 

V 

V 

Electrodes 

Piezo (25 um) 

Electrodes 

Ø100 cm 

Silicon (200 um) 
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Poling Process (On Wafer) 

DIC Measurement Data 29 






Poling Data 
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Operating Mirror Video 
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Operating Data 
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V. Conclusion 
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What about large apertures? 
• Concept still valid, but… 
• Silicon wafers constrained to 12” diameters 
• Other thin, lightweight yet stiff substrates 

– Carbon fiber?  How to achieve lasting polished 
surface with acceptable roughness?  
TBD… 

Conclusion 
• So far successfully: 

– Replicated surface finish from polished wafers 
– Produced basic thin deformable mirror samples  
– Processed single actuator samples 
– Demonstrated ample mirror response 

– 20 μm on 200 μm wafer 
– Model:  ~100 μm on 100 μm 

• Still to come, more testing: 
– Influence function measurements 
– Multi-channel closed loop control 

Courtesy of John Steeves (Caltech) 
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• backup 
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Dynamic Modes (Model) 

50 Hz 51 Hz 53 Hz 140 Hz 

179 Hz 

• Stiff Si established mode frequencies 

• Polymer provides significant damping 
– Especially if shunted (via passively or actively 

tuned LRC circuit) 
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Mirror Design 
• Mass 

 Mirror < 5 grams (0.6 kg/m^2) 
 Controller boards mass ~250 grams total 
 Plus additional mass 

⁺  3DOF Gimbal mount  
⁺ Shutter and casing 
⁺ Hardware  
⁺ Cabling 

⁺ Expected total mass 
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Testing 
• Tested electronics on 6” mirrors in front of 

Zygo interferometer 
• Successfully demonstrated multiple channel control on 6” Si and glass 

mirrors with 12 channels up to +/- 400 V 

• Stable fringes 

HV Electronics 
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Previous Studies 

• Design requirements 
– Broad family of deformation modes 
– Low residual error 

• Solution:  divide electrodes into patterns 
– Individually addressable 
– Found lattice of narrow electrodes better than 

filled tesselation 

• Even better: multiple overlying patterns 
– Combine a fine pattern with a coarse pattern for 

bulk curvature changes 
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Patch vs. Bar Comparison 
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Process Development 

• Mirrors require high dielectric strength 
– Large voltages (1000’s of Volts) applied during 

poling 

• Need uniform layer thicknesses 
• Much trial and error to improve quality 

– Interlayer adhesion 
– Polymer thermal damage  
– Metal thermal stress cracking 
– Voids, bubbles, defects, contaminants 
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Predicted General Performance  
(Free Film) 
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PVDF Behavior 

•  Low leakage current, can hold charge on the order of minutes 

•  Viscoelastic relaxation under voltage 
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Related Work 
Xinetics/JPL/LLNL  

(Ealey, Hickey, Barbee, Redding) 
Air Force (Sobers,  Agnes, Mollenhauer) 

Mantech/JPL (Pearson, Moore, Fang)  Mevicon (Lindler, Flint) 

Tensioned PVDF mirror with 
 bonded electrodes 

 

Thin facesheet, SiC backing structure 
with embedded ceramic actuators 

 

Edge actuation 
 

Self-tensioning PVDF film 
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Piezoelectric 
membrane layers 

Electrodes 

Reflective coating 

Stiffener rim 

Mirror Design 
• Alternating layers of electrodes and active material 

• 90 (fine pattern) + 16 (coarse pattern) channels 
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Poling Process Video  
(Freestanding Film) 
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