Large-Scale Silicon Oxycarbide Composite Component for Ultra-Low Cost, Lightweight Mirrors

November 2017

Bill Easter - Semplastics Arnie Hill – Semplastics

Team

- NASA SBIR Advisors Phil Stahl, Ron Eng
- ZeCoat Corporation David Sheikh
- Optical Mechanics, Inc. (OMI) James Mulherin, Chris Mulherin
- UCF Kathleen Richardson, Myungkoo Kang
- Semplastics

Talk Outline

- Technology Background
- NASA SBIR Phase 2 Activities Thick Bulk Component Scaling Sealing/Coating Development
- Commercial Possibilities
- New Material Developments
- Conclusions

Who is Semplastics?

- 17 year old company focused on high performance plastics in electronics
- Recent development activities in novel high performance materials- X-MAT®
- US patents #8,961,840,#9,434,653 and #9,764,987 issued- multiple patents pending
- Phase I NASA SBIR granted in May 2015
- Phase 2 NASA SBIR granted in April 2016
- Space Florida Grant for 3D printing Ceramics in June 2017

Comparison of Optical Telescopes

https://commons.wikimedia.org/wiki/File:Comparison_optical_telescope_primary_mirrors.svg

What are the main goals of the project?

- Reduce areal costs to less than \$250K/m² for UV/Optics and less than \$75K/m² for IR systems
- Reduce the weight of mirror substrate through molding lightweighted structures using lighter X-MAT® materials (SiOC)
- Make a high performance mirror component that can meet NASA's requirements

NASA SBIR Phase 2 Technical Objectives

- Demonstrate Scalability by producing both 14" and 24" diameter mirrors
- Implement and Characterize Two Different mirror coating systems
 - Polymer Based Coating System- Zero CTE Composite
 - Silicon cladding system using baseline process developed to coat SiC mirror substrates

Advantages of X-MAT® OC1

- Lightweight- 1.69 g/cc (SiC- 3.2 g/cc)
- High Temperature performance- capable of 1100C continuous usage
- Low Coefficient of Thermal Expansion- 0.60-1.27 x10E-6 in/in C (-150C-300C)- Similar to Quartz
- Amorphous structure provides isotropic properties
- Very Green technology- Uses 20X less energy than typical SiC manufacturing processes!!

SiC Manufacturing Process*

***Overview of the production of sintered SiC Optics and optical subassemblies**, S. Williams, CoorsTek, Inc.; P. Deny, BOOSTEC Industries (France) [5868-04]

X-MAT® Mirror Blank Process

So What is the Big Deal with X-MAT®?

- Polymer resin instead of ceramic powders
- Typical plastic processes (3D printing, molding, machining, etc.) possible
- Shorter Manufacturing Intervals
- Chemical Bonding of the Materials rather than Sintering (Significantly Lower Energy)
- Tailored Material System Properties

Significance/Review of Polymer-Derived Ceramics (PDCs)

- 40 year history of PDC Development activities
- Commercially Available Resins
- Current commercial usage limited to ceramic fibers, polymer coatings and thin ceramic films
- Multiple resin types and processes produce unique ceramic types and properties

PDC Technologies

J. Am. Ceram. Soc. 93 [7] p.1807 (2010)

Polymer-Derived Ceramics Processing Cycle

PDC Processing Temperature Regime

Polymer to Ceramic Processing

Historic PDC Limitations

- Can only produce thin films or fibers due to cracking and degradation of films thicker than several hundred microns
- * The polymer to ceramic conversion occurs with gas release which typically leads to cracks or pores which make the direct conversion of a preceramic part to a dense ceramic virtually unachievable, unless its dimension is typically <u>below a few</u> <u>hundred micrometers</u>(as in the case of fibers, coatings, or foams.) J. Am. Ceram. Soc. 93 [7] p.1811 (2010)

Scaling of X-MAT Technology- Largest Bulk PDC Made(No Fibers)-"Virtually Unachievable"

3" Test Coupon

6" Mirror Blank

Curved Surface of 6" Mirror

14" Mirror Blank

9.25" Hex Mirror

19" Green Body

Properties of X-MAT® OC1

TEST	VALUE	UNITS
Fracture Toughness	.96	Mpa-m^1/2
Flexural Strength	43.5	Мра
СТЕ	0.75	1E-6in/in°C
Young's Modulus	56	Gpa
Poisson's Ratio	.53	-
Density	1.69	g/cc

SEM of X-MAT® OC1

SiOC PDC Uncoated Substrate

Uncoated SiOC PDC

- Highly porous
 - ➤ ~80% dense
- Highly Rough Surface
 - > RMS roughness of ~12 μ m

llass Processing and Characterization Lab

Test Disc Photos

X-MAT® Disc – No Coating

Polyimide Coated X-MAT® Disc with Sealed Pores

Test Disc Pore Photos

X-MAT® Disc – No Pore Filling

X-MAT® Disc with Polyimide Filled Pores

Zygo Process Figures

Unground Disk

Ground Disk

Zygo Process Figures (Cont.)

Polyimide Coated Disk

Aluminum Coated Disk

6 inch Mirror- Demonstration Sample

Additional Cladding/Sealing Techniques to be Evaluated

- Low CTE oxide glasses.
- Fully dense green cast SiOC ceramic.
- CVD SiC coating.
- Silicon monoxide coating.
- Slumped glass top layer.

X-MAT® Markets

Typical Technology Life Cycle

Commercial Possibilities

- Purchase X-MAT® Lightweighted blanks from Semplastics
 - Advantages
 - Lower Cost
 - Faster Turnaround 1-2 months in production
 - Lightweighted Structures Molded-In
- License X-MAT® mirror technology from Semplastics
- Joint Development Project for Specialized Mirrors

IR&D Material Developments

X-MAT® Coal Core Composites

www.x-materials.com

 CCC Density- 1.2-1.7 g/cc
 CTE- 2.35 10-6/C (100 C)

 SiC Density- 3.1-3.2 g/cc
 CTE- 3-4 10-6/C

- Thick Bulk X-MAT® SiC structures
- X-MAT® 3D Printing
- Stronger and Tougher SiOC ceramics

Video of Coal Core Composite

Conclusions

- Both Silicon and Polyimide Coating Processes are being developed and scaled
- Initial Grinding, Polishing, and Shaping Processes have been developed, Further refinements on-going
- 14.5" Bulk Component Produced/ 6" Mirror Demonstration Sample
- Continuing Advances of X-MAT® Technology in Scale, Performance, and Material System Types

Acknowledgements

NASA- Phil Stahl, Ron Eng ZeCoat – David Sheikh OMI – James Mulherin, Chris Mulherin UCF- Kathleen Richardson, Myungkoo Kang Semplastics- Arnie Hill, Todd Hubert, Matthew Stephens, Barbara Hopkins, Greg Yatko

