

Spectral Performance of WFIRST/AFTA Bandpass Filter Prototypes

Manuel A. Quijada¹, Winson Huang², Kevin H. Miller¹, Laurie Seide³, David Content¹, and Jeff Kruk¹

¹NASA Goddard Space Flight Center, Greenbelt MD ²Stanford University, Department of Materials Science and Engineering, ³Stinger Ghaffarian Technologies, Goddard Corporate Park

- Overview & Objectives
- Experimental details
- Results
- Conclusions

WFIRST-AFTA Summary

- The highest ranked NWNH large space mission.
- Dark energy that is driving the current accelerating expansion of the universe
 - A wide field telescope for pointed wide observations of the NIR sky
 - Perform statistical census of planetary systems through microlensing survey
- The WFIRST-AFTA Design Reference Mission has
 - 2.4 m telescope (already exists)
 - NIR instrument with 18 H4RG HgCdTe detectors
 - Baseline exoplanet coronagraph
 - 5 year lifetime, 10 year goal
- WFIRST-AFTA will perform Hubble-like quality and depth imaging with a much larger field of view

Wide Field Instrument Overview

Key Features

- Single wide field channel instrument for both imaging and spectroscopy
 - 3 mirrors, 1 powered
 - 18 4K x 4K HgCdTe detectors
 - 0.11 arc-sec plate scale
 - Grism used for GRS survey
- IFU channel for SNe spectra, single HgCdTe detector
- Single element wheel for filters and Grism

Element Wheel Assembly

Wide Field Channel Description (Cycle 5)

- The wide field channel's only routinely moving part is the element wheel (EW)
- 8 positions: 6 filters, blank, grism (galaxy redshift survey)
- Table shows how measurement modes and observations align

					SN Detect	SN	HLS		Microlensing		
#	Min (mm)	Max (mm)	R	Shallow	Med/Deep	Spec	Image	Spec	Monitor	Color	Avail for G
Z087	0.760	0.977	4.0							2X daily	
Y106	0.927	1.192	4.0	х			Photo-z				
J129	1.131	1.454	4.0	х	х						
H158	1.380	1.774	4.0		х		Photo-z & Shapes				
F184	1.683	2.000	5.81								All
W149	0.927	2.000	1.442					х	15 min cadence		
GRS	1.35	1.95	793								
IFU	0.600	2.000	75			х					
		#	Mir	ո (៣m)	Max (mm) C	enter (M	m) '	Width (Mr	n) R	
		Z087	0	.760	0.977		0.869		0.217	4	
		Y106	0	.927	1.192		1.060		0.265	4	
		J129	1	.131	1.454		1.293		0.323	4	
		H158	1	.380	1.774		1.577		0.394	4	
		F184	1	.683	2.000		1.842		0.317	5.8	1

WFI element wheel optics list

1.485

1.650

1.030

0.600

1.44 2.75

W149

GRS

0.927

1.35

2.000

1.95

Spectral Band-Pass Definitions

Procurement of a subset WFI filter complement:

- Grism (Tight slope requirement)
- W149 (Widest band)
- Z087 (Shorter passband)

Spectral and interferometric characterizations:

- Band-pass transmission performance at various temperatures, particularly @ **170K**, the operating temperature for WFIRST.
- Spatial Uniformity
- Out-of-band rejection
- Reflected Wave Front Error Distortion
- Report to WFIRST design team.

- Flat substrate disks (110 mm x 6mm) of the Corning 7980 type.
- Relatively tight WFE performance (<0.5 wave @ 632.8 nm).
- Substrates were sent to all 3 vendors (3
 EA) for bandbass coating application.
- One inch coupons were also requested (for cryogenic measurement purposes)
- Three coating vendors were selected (labeled A, B, and C) to produce prototypes for each of the 3 filters:

Spectral Characterization

Perkin Elmer Spectrometer (950)

Transmittance > 200-3000 nm spectral range (Spectral resolution 0.25 nm) Photometric accuracy (8A units)

Spectral uniformity

Cryogenic Measurements

NAS

Bruker Spectrometer

Fourier Transform Spectrometer (FTS) 1000-10000 nm (Res. < 0.05 nm) Photometric accuracy (3-4A)

Cryostat Sample holder

1800

A: Wavelengths @ 50%T_IB

E: Ave.Out-of-band optical density Opt_Den = -log10(Transmittance)

1900

A 2000

2100

For a given transmission curve, the followings are the characteristics we

В

are interested in:

1300 A

1400

1500

1600

1700

Wavelength(nm)

1.0

0.8

0.6

0.4

0.2

0.0

1200

Fransmittance

Band-Pass Filter Parameters cont...

	BANDPASS REQUIREMENTS (Cycle5)									
Parameter	Grism	Z087	W149							
А	≥95%	≥ 95%	≥ 93%							
B _s	1345 nm (±5 nm)	758 nm (±10 nm)	925 nm (±20 nm)							
BL	1955 nm (±5 nm)	978 nm (±10 nm)	2000 nm (±20 nm)							
С	1650 nm (±5 nm)	868 nm (±10 nm)	1462 nm (±20 nm)							
D_{s}, D_{L}	≤ 0.2%	\leq 3%	≤ 3%							
Es	OD 4 (500-1250 nm)	OD 4 (500-740 nm)	OD 4 (500-900 nm)							
EL	OD 5 (2050-3000 nm)	OD 5 (1000-3000 nm)	OD 5 (2050-3000 nm)							

Spectrum Overview: Vendor A

3 types of filters (Grism, W149, and Z087):

Spectrum Overview: Vendor B

Spectrum Overview: Vendor C

Bandpass Spectra @ 295 K (Vendor C) 1.0 mm 0.8 Z087 W149 Grism Transmittance 0.6 0.4 0.2 0.0 600 800 1000 1200 1400 1600 1800 2000 2200 Wavelength (nm)

Cryogenic Measurement: Grism

- Comparison among 3 vendors
- Very weak Temperature dependence

Bandpass Spectra @ 170 K (Grism)

- All vendor met the 50% points on the short-side of the pass-band response
- Only one vendor (JDSU) came marginally closed at meeting the long-side slope of the Grism response
- All but one vendor (JDSU) failed the 50% points and the slope requirements on the long-side of the pass-band.
- We anticipate future flight procurements may be acceptable since the tight slope requirement has been relaxed in recent Cycle6 design .

Cryogenic Measurement: Z087

All vendor met the 50% points on the short-side of the pass-band response

November 10, 2015

Cryogenic Measurement: W149

- All vendor met the 50% points on the short-side of the pass-band response
- Two vendors (JDSU and Alluxa) met the 50% points on the long-side.
- All vendors produced slopes that are tighter than the requirements.

Bandpass Spectra @ 170 K (W149)

Spectral Performance Summary

- Temp. @ 170 K (Numbers in () @ 295K)
- Numbers in green means vendor met requirements
- Numbers in red means filter failed to meet requirements
- Yellow numbers indicate performance was marginally close at meeting requirements.

Grism	$\lambda_{low} (\mathrm{nm})$	$\lambda_{high} (nm)$	λ_{center} (nm)	T_{ave} (%)	$Slope_{low}$ (%)	$Slope_{high}$ (%)
Specifications:	1330 ± 5	1980 ± 5	1655 ± 5	≥ 95	≤ 0.2	≤ 0.2
Vendor A	$1332 \ (1333)$	1973 (1975)	1652 (1654)	99	0.77	0.70
Vendor B	$1331 \ (1332)$	1984 (1986)	1657 (1658)	99	0.40	0.47
Vendor C	$1328\ (1329)$	1972 (1974)	1650 (1652)	99	0.73	1.21
Z087	λ_{low} (nm)	$\lambda_{high} (nm)$	λ_{center} (nm)	T_{ave} (%)	$Slope_{low}$ (%)	$Slope_{high}$ (%)
Specifications:	$758\ \pm10$	978 ± 10	868 ± 10	≥ 95	≤ 3	≤ 3
Vendor A	757(757)	$976 \ (977)$	866 (867)	97	0.54	0.58
Vendor B	755(756)	973 (974)	864 (865)	99	0.51	0.42
Vendor C	750(750)	952 (953)	851 (852)	95	1.57	0.61
W149	λ_{low} (nm)	$\lambda_{high} (nm)$	λ_{center} (nm)	T_{ave} (%)	$Slope_{low}$ (%)	$Slope_{high}$ (%)
Specifications:	925 ± 20	2000 ± 20	1462 ± 20	≥ 95	≤ 3	≤ 3
Vendor A	940 (940)	$1981 \ (1983)$	1460(1462)	98	0.42	0.77
Vendor B	920 (921)	$1984 \ (1985)$	1452 (1453)	98	0.93	0.45
Vendor C	945	1965	1456	88	1.15	1.83

Spatial Uniformity: Grism

Chart Legends:

C -> Center T -> Top L -> Left R -> Right

B -> Bottom

- Transmittance of 110mm filter prototypes were measured over a clear (100 mm) aperture
- Spectrometer beam is rectangular (2x10 mm²)
- Transmittance was checked in a cross pattern across filter clear aperture
- The values in the middle are the wavelengths for the corresponding parameters
- The values at the other locations are the deviations (delta) from the center values
- Variation in bandpass for Grism is < 2.7 nm for all three vendors
- One anomaly for vendor A where the 50% FWHM at λ_{high} is -4.2 nm on Left location.
- Second and 3rd anomalies for vendor C are 50% FWHM at λ_{high} at -9.3 nm and λ_{low} at 6.7 nm on Top locations.

Variation in Bandpass < 3 nm (vendor B)

W149

Z087

Optical Density: Grism

Optical Density = - log10(Transmittance)

Optical Density: W149 & Z087

Vendors Comparison: W149 Vendors Comparison: Z087 10.0 10 9.0 9 8.0 8 Vendor A 7.0 7 **Optical Density Optical Density** Vendor B 6.0 Vendor C 6 5.0 5 4.0 4 3.0 Vendor A 3 Vendor B 2.0 2 -Vendor C 1.0 1 0.0 0 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900 Wavelength (nm) Wavelength (nm)

WFE Measurements

S1

Typical Interferogram

Interferometer:

Zygo Mark-IV •

Filter Coating Specifics:

- Fused Silica substrate
- 110mm diameter OD •
- 6mm thick •

Parts:

- \triangleright Z087 (SN418-Z087)
 - Item #30175418 Z087 BP Filter V3.2
 - Run #1017-19553-19559
 - Coated 2/20/2015
- GRISM (SN419-GRISM) \geq
 - Item #30175419 GRISM BP Filter V3.2
 - Run #1017-19556-19562
 - Coated 2/23/2015
- W149 (SN420-W149) \geq
 - Item #30175420 W149 WBP Filter V3.2
 - Run #1017-19576-19582
 - Coated 3/4/2015

RMS WFE Comparison

Surface Error RMS WFE in Waves for $\lambda = 632.8nm$

		Vendo	or A	Vendo	or B	Vendor C		
Type	Surface	RMS WFE	Power	RMS WFE	Power	RMS WFE	Power	
Z087	Side 1	2.931	10.166	0.246	-0.640	1.543	-5.442	
	Side 2	2.687	-9.330	0.289	0.986	1.914	6.624	
GRISM	Side 1	0.771	-2.751	0.097	-0.191	0.204	0.260	
	Side 2	0.719	2.484	0.292	0.928	0.229	0.550	
W149	Side 1	1.281	-4.423	0.147	-0.478	N/A	N/A	
	Side 2	1.237	4.281	0.069	0.046	N/A	N/A	

Compare Surface Error at Ambient & Cryo

Surface Error RMS WFE in Waves for $\lambda = 632.8nm$

		Ambien	t at 293K		Cryo at 160K						
Vendor	S1 = 'Filter'		S2 = 'N	S2 = 'Mirror'		S1 = 'Filter'		S2 = 'Mirror'			
	RMS WFE	Power	RMS WFE	Power	RMS WFE	Power	RMS WFE	Power			
Z087											
А	2.931	10.166	2.687	-9.330	2.125	-7.316	2.224	7.702			
В	0.246	-0.640	0.289	0.986	0.359	-0.970	0.287	0.982			
С	1.543 -5.442		1.914	6.624 2.344		-8.070	2.472	8.538			
W149											
А	1.281	-4.423	1.237	4.281	0.876	-3.002	0.662	2.090			
В	0.147	-0.478	0.069	0.046	0.316	-0.241	0.074	-0.149			
С	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
	GRISM										
А	0.771	-2.751	0.719	2.484	0.592	1.940	0.451	1.554			
В	0.097	-0.191	0.292	0.928	0.204	-0.686	0.145	0.332			
С	0.204	0.260	0.229	0.550	0.512	1.766	0.656	-2.240			

- Spectral characterization of band-pass filters subset WFIRST/AFTA WFI imager. Most filters met parameters, such as the in-band transmission rates, out-of-band rejections, and sharpness of the edges.
- The position of band-pass transmission curve is very weakly temperaturedependent. It shifts towards the low-wavelength region as temperature decreases.
- The RMS WFE distortion was an order of magnitude smaller for vendor B versus Vendor A

WFE System Impact

The Fringe Zernike files were imported into Code V WFE performance was compared to nominal design residual Change in Fold Mirror (F2) Position for WFE Compensation Resulting Change in System WFE = Δ RMS WFE

WIM System Impact in *Microns* for Δ's RMS WFE & F2 Position

	Uncoated			1	Vendor E	3	Vendor A		
Coating Name	Δ RMS WFE	Δ F2 Position	Ratio S1/S2 Power	Δ RMS WFE	Δ F2 Position	Ratio S1/S2 Power	Δ RMS WFE	Δ F2 Position	Ratio S1/S2 Power
Uncoated	0.004	34	0.474						
Z087				0.002	13	0.649	0.007	35	1.090
GRISM				0	33	0.206	0.007	-12	1.107
W149				0.002	-19	10.391	0.001	-5	1.033

Spatial Uniformity

Slope Uniformity

Slope_Specs

Grism In-Band Spatial Uniformity

- (1) Most sample filters meet the proposed specifications. Optical properties, such as the in-band transmission rates, out-of band rejections, and sharpness of the edges, will be considered by the WFIRST design for further vendor selection.
- (2) The position of band-pass transmission curve is temperaturedependent. It shifts towards the low-wavelength region as temperature decreases.