

Rib Stiffened Sandwich Panels using Aluminum, Silicon Carbide, and Beryllium for Lightweight Telescope Structures

B. Catanzaro, November 1, 2016 bcatanza@alumni.caltech.edu

COTR: Hans-Peter Dumm / FA9453-12-C-0304

Over Arching Goal of SBIR

Reduce the Time and Cost of Deployment of Lightweight Telescopes

- Prior Presentations Wavefront Coding
- Stretch Goal Rapid Fabrication of Lightweight Structures from Advanced Materials

Theme...

What

Materials?

- How Can I Gain Access to Advanced Materials?
- How Do I Reduce Cost / Schedule without Sacrificing (too) Much Performance?

What Are the Manufacturing Methods?

What Are Some Cost Drivers?

Grouped by $\boldsymbol{\alpha}$

Which Materials?

		ρ	Е	α (20C)	К	Ср
(CFRC	1.78	93	0.02	35	800
	ULE	2.21	67	0.03	1.31	766
	Zerodur	2.53	91	0.05	1.64	821
	Super Invar	8.13	148	0.3	10.5	515
	Invar 36	8.05	141	1	10.4	515
(SiC	3.21	456	2.3	186	680
	Pyrex	2.23	63	3.3	1.13	1050
	Kovar	8.35	138	5	17	439
	Titonium	4.43	215	8.8	7.3	560
(Beryllium	1.85	287	11.3	216	1925
	55 3 04	8.00	193	14.7	16.2	500

Handbook of Optomechanical Engineering, Ahmad Opto-mechanical Systems Design, Yoder

General Processing Methodologies

CFRC	SiC	Beryllium
 Mandrel / Mold Unitape Layup Cure Machine Bond 	 Mandrel / Mold Convert Greenbody Fire Deposit Infiltrate Machine 	 HIP / Treat Machine Braze / Bond

• Braze / Bond

Intuitive Trade-Off

- Lots of Enthusiasm Regarding 3D Printing
 - Can (Should?) Advanced Materials Be 3D Printed?

Cost Structure

Inspired by Assembled CFRC

- Tube / Truss
- Panel
 - Honeycomb
 - Rib Stiffened
 - Open Back
 - Closed Back

RCOS

Personal Bias: Tend to Favor Panel to Reduce Fitting Mass

Rib Stiffened Structure Examples

Manufacturing Process Concept

Create Flat Stock	 Practical Thicknesses Likely Known Inventoried, Optimize for Manufacturing 		
Design Structure / Fittings	Mortise / TenonMetallic Threaded Fittings		
Cut Flat Stock	WaterjetWire EDM		
Assemble	 EA9394, 3M 2216 (et al. adhesives) Tooling for Precision Fittings 		

Stiffness / Density Suggests Unique Design

	ρ	Е	(Ε /ρ) ^{1/2}	α (20C)
CFRC	1.78	93	7.2	0.02
Invar 36	8.05	141	4.2	1
SiC	3.21	456	11.9	2.3
Titanium	4.43	215	7.0	8.8
Beryllium	1.85	287	12.5	11.3
	X8 Variation	X5 Variation		

How Could These Result in Similar Designs?

Optimize Sizing

Develop Guidelines with Reference Design

Practical Sizing of Structure

- Frequency Goal > 500 Hz (System)
- Mass
 - Attempt Best Lightweighting of Panels
 - Overall Mass Driven by Existing Optics
- Conclusion
 - Panels Should be Approx. $f_0 = 1000 \text{ Hz}$
 - Facesheet Approx. Thick = 1 mm

Is This Optimal or Just a Guess?

Rib Density vs. Depth

- Assume a Square Rib Pattern
 - Ribs Likely Need to be As Stiff as Facesheet
 - Stiffness Tied to Moment of Inertia

Need to Pick Gauge Thickness

- Gauge Thickness affects Frequency
 - Effect on Rib Stiffness Minimal
 - Effect on Facesheet Thickness Dramatic
- Imagine Each Cell is a Plate with Fixed Edges

$$f_{cell} = \frac{\pi}{1.5} \sqrt{\frac{D}{\gamma}} \left(\frac{3}{a^4} + \frac{2}{a^2 b^2} + \frac{3}{b^4} \right), \gamma = \frac{A}{m} = \rho \cdot t_{facesheet}$$
$$a = b = R \rightarrow f_{cell} = \frac{2\pi}{1.5R^2} \sqrt{2\frac{D}{\gamma}}$$

Gauge Thickness vs. Material

- Aluminum to 1 kHz at 1 mm
- Be + SiC at 1mm Exceed 1kHz... too thick!

Sandwich Panel Reference

- Size: 150 mm x 200 mm
- Goal: f = 1000 Hz with Aluminum
- Optimize Design for Adv. Materials

Aluminum Design

FEA Results

Material	Free-Free 1 st Freq.	Mass
Aluminum	1250 Hz	0.19 kg
Silicon Carbide	3130 Hz	0.23 kg
Beryllium	2880 Hz	0.13 kg
Invar	1070 Hz	0.58 kg

- Sandwich Structure Far Exceeds Goals for Advanced Materials
- Remove Unnecessary Mass

Lightweighted Sandwich (SiC)

Similar Performance with Be

FEA Results

Material	Free-Free 1 st Freq.	Mass
Aluminum	500 Hz	0.13 kg
Silicon Carbide	1190 Hz	0.15 kg
Beryllium	1050 Hz	0.089 kg
Invar	420 Hz	0.39 kg

Manufacturing Panels

Challenges in Waterjet

- Silicon Carbide Robust to Grinding
- Waterjet Processing Left Cracks

Stiffness Testing

Frequency Response Function

Aluminum Sandwich:1 kHz

FRF / Invar Sandwich

Invar: <900 Hz

FRF / Aluminum Pane

Aluminum Pane: <500 Hz

FRF / Beryllium Pane

Be Pane: 1300 Hz

FRF / Silicon Carbide Pane

*With Cracks

Lessons Learned

- Not Always Easy To Achieve Geometry that Optimizes Specific Stiffness
 - Facesheets for Panels must be Thin
 - Thickness Affects
 - Robustness, Grinding Costs
- Beryllium
 - Material and Processing Straightforward
- Silicon Carbide
 - Process Steps Known but Maturing
 - Material Much More Robust than Advised
- Costs... Just About the Same

Acknowledgements

- Materion
 - Rob Michel / Acquired Material Instantly
- WessDel
 - Rich Bernard / Outstanding Waterjet
 Processing
- Fantom
 - Fred Styer / Provided Material Instantly
- Bear Machining
 - Blair Stultz / Developed Waterjet Process