RAPT INDUSTRIES

when speed and precision matter R/APT Industries.com

Finishing Advanced Mirrors – Answering the Challenge

Areal Density (Kg/m²)

- Aggressive reduction in areal density
- Simultaneous requirement for higher stiffness
 - Exotic geometries/materials
- Aggressive cost reduction
 - Main drivers for cost are lead time (touch time) and risk
- Address Scale-Up Issues
 - Large CAs for better contrast
 - Monoliths are expensive
 - Edge roll issues with segmented designs

RAP Processing of lightweight mirrors

The Chemistry of the Process

For SiO₂:

$$SiO_2 + CF_4 \rightarrow SiF_4 + CO_2$$

For silicon:

$$Si + CF_4 + O_2 \rightarrow SiF_4 + CO_2$$

For SiC: SiC + CF4 + O2 \rightarrow SiF4 + 2CO

Reaction Products Must be Volatile

Other plasmas - other materials e.g. Ni, Be, Ti...

- Damage-free figuring @ atmospheric pressure
- Gaussian footprint for chemical figuring tool
 - Arrhenius rate reaction

Tool path algorithm

Calculated Velocity Map (red means less dwell time)

RAP Material Removal Rate

Rapid, Damage-Free Precision Surfaces - The IMP toolbox

Chemical Figuring

- Non-contact
- Atmospheric
 Pressure
- Damage Mitigation
- Scalable
- Progressive roughening possible for polycrystalline substrates

Conformal Buffing

- Pitch tiles to provide state of the art roughness
 - Lap stiffness controlled to provide conformal behavior at low/mid spatial frequencies
- Low contact force

High Density Metrology

- Rapid collection of dense data
- Fast setup reference to a mechanical sphere
- Seamless integration into tool path algorithm

Mitigating subsurface damage during optics fabrication

RAP Benefits

- Force-free Processing
 - No stress imparted
 - Deterministic convergence for high aspect ratio (low areal density) optics
 - No stiffness requirements on large tools
 - Allows the manufacturing of precise surfaces with low-cost imprecise tools
- Atmospheric Pressure Process
 - Vacuum Processing has scalability concerns, cycle time issues
 - Ion-beam milling
- Eliminates/Minimizes SSD
 - Contact Processing techniques impart SSD to surface
 - Reduction in tensile strength of optic
 - Chemical Mechanical Polishing
 - Single point diamond turning

Twyman Experiment Methodology

$$\sigma = \frac{4 \,\delta \,\mathrm{E} \,\mathrm{d}^2}{3(1-\nu) \,\mathrm{t} \,\mathrm{D}^2}$$

- σ = Tymann stress (unknown)
- v = Poisson's Ratio
- E = Young's Modulus
- t = Damage layer thickness (unknown)
- d = Substrate thickness
- D = Substrate Diameter
- δ = Circular plate deflection (or Sag)

SSD from Milling

Before Milling

After Milling

Stress reduction through RAP^{TM}

- High activation energy for SiC thermal management during figuring critical
- Considerable knowhow to minimize edge-effects
- RAPT to address opportunity through manufacturing services out of PA
- Polycrystalline/multi-phase materials roughen up, iteration between figuring and buffing needed to obtain desired figure/roughness
- 150th wave RMS figure and 3 Angstroms RMS roughness achieved repeatably

On-Axis SiC parabola for Ball Aerospace

- On-axis SiC f/2.25 parabola
- 200 mm clear aperture
- Finished to 0.050 λ RMS
- Roughness of 3.3A RMS

- Asphere figuring in 3 weeks
- Can achieve figure errors of 0.010 λ RMS

Our Programs

W911NF-04-2-0001 – Army Research Laboratory

COTR: Dr. Jane Adams

NNM06AA11C – NASA
 Phase 2 SBIR – MSFC

COTR: Mr. John West

 W9113M-07-C-0149 – MDA Phase 2 SBIR – AFRL

COTR: Dr. Larry Matson

Gap in developing scalable thermal strategies – Needed for large SiC mirrors

Current Projects - ARL

- Army Research Lab
 - Multi-year project to develop RAP process for rapid production of SiC optics
 - Current year program primarily focused on equipment development
 - Third generation prototype RAP system design and build
 - Process characterization
 - Hardware/Software enhancement
 - Plasma process
 - Coarse metrology
 - Algorithms

Current Projects - NASA

- NASA SBIR Phase II
 - Objective: To demonstrate IMP on powered SiC optics
 - Tasks:
 - Develop design for lightweight SiC optics
 - Comparable to JWST segments
 - Optimize process for powered mirrors
 - Produce 300mm aspheres (on-axis)
 - Study scale-up to 1 meter class mirrors

Current Projects - MDA

- MDA SBIR Phase II
 - Extend IMP to the production of fast, off-axis SiC aspheres
 - Target design: ~300mm diameter f/1 off-axis parabola
 - Development Tasks:
 - Apply RAP to steeply curved surfaces
 - Profilometry of fast off-axis aspheres
 - Demonstrate deterministic sub-aperture figuring processes

RAP IMP – Application to "Glass"

- Lower activation energy for "Glass" materials permits "cool" operation
- Fine, highly deterministic figuring runs at atmospheric pressure lead to very little change in surface roughness
- RAPT to address opportunity through the sale/lease of highly automated tools

Results on Glass/Glass-Ceramics

- Currently in preliminary stages of assessing RAP etching of various mirror substrate materials
 - Fused quartz extensively studied
 - Pyrex successfully aspherized
 - Figuring of ULE in progress
 - Preliminary results on Zerodur look promising
- For these materials, surface roughening during RAP is related to SSD
 - Well-prepared surfaces do not get significantly rougher with etching

Conclusions

- RAP Processing is effective for damage-free shaping of SiC
- Integrated Manufacturing Process has been used to rapidly produce several aspheres
- Ongoing programs with ARL/NASA/MDA are providing advances in both process and equipment
- Production of fast, off-axis aspheres is coming
- Application of IMP to glass and glass-ceramic mirror materials is showing significant promise

8" lightweight SiC asphere (parabola, f/4) finished to 0.27 λ PV