

## Preparing SCHOTT Extreme Lightweight ZERODUR® Mirror (ELZM) for Testing at MSFC

Tony Hull, Adjunct Professor of Physics and Astronomy University of New Mexico

tonyhull@unm.edu



Tara Maggiano, Development Manager SCHOTT North America, Inc – Advanced Optics tara.maggiano@us.schott.com

### 1. Summary of AMTD-2

- SCHOTT Circumstances, Objective and AMTD Scope
- 3. What is ELZM?
- 4. Steps to be accommodated in AMTD-2
- 5. Overall Summary

### MSFC: Advanced Mirror Technology Development Phase 2

"Our objective is to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. As identified by Astro2010, a new, larger UVOIR telescope is needed to help answer fundamental scientific questions, such as whether there is life on Earth-like exoplanets; how galaxies assemble their stellar populations; how baryonic matter interacts with the intergalactic medium; and how solar systems form and evolve"...

- 1. Summary of AMTD-2
- 2. SCHOTT Circumstances, Objective and AMTD Scope
- 3. What is ELZM?
- 4. Steps to be accommodated in AMTD-2
- 5. Overall Summary

### Material

- We have heard a number of discussions of elegant approaches to making mirrors for spaceborne application
- Selection of mirrors for a system
  - Depends strongly on operating environment, wavelength and operating temperature
  - Can strongly influence the cost, mass and complexity of a system
- Lightweight ZERODUR®, now available from SCHOTT, exhibits mass, thermal, surface qualities and as well as being cost attractive to small and large spaceborne missions

### **ELZM Circumstance**

- ZERODUR®, a very low expansion heritage mirror substrate material by SCHOTT, has flown on over 30 missions over the last 30+ years.
  - HST M2, Chandra, etc.
- It is currently in production in blanks as large as
  4m
- In a series of papers, we have considered methods to rapidly and inexpensively make aggressively lightweighted mirrors of ZERODUR®

- The major purpose of this study is not to merely provide another form of lightweight mirror, but one which offers attractive cost, schedule and risk options.
- SCHOTT has built a fully representative 1.2m isogrid ZERODUR® mirror 88% lightweighted.

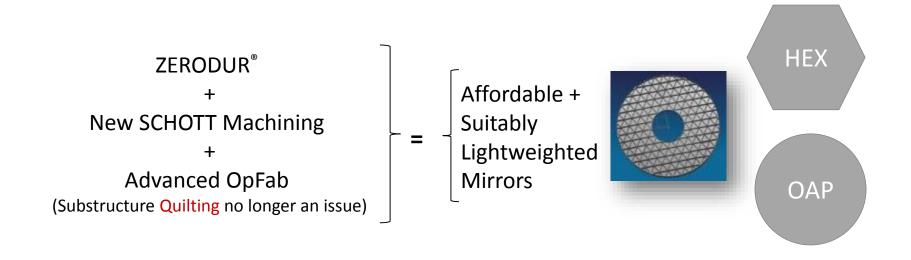


- SCHOTT's 1.2m mirror was first exhibited at the AAS Annual Meeting in January 2013.
- It is f/1.29, with efficient isogrid 2mm deep ribs
- It is designed to safely accommodate typical launch loads
- It is machined from a single monolithic homogeneous piece of ZERODUR®

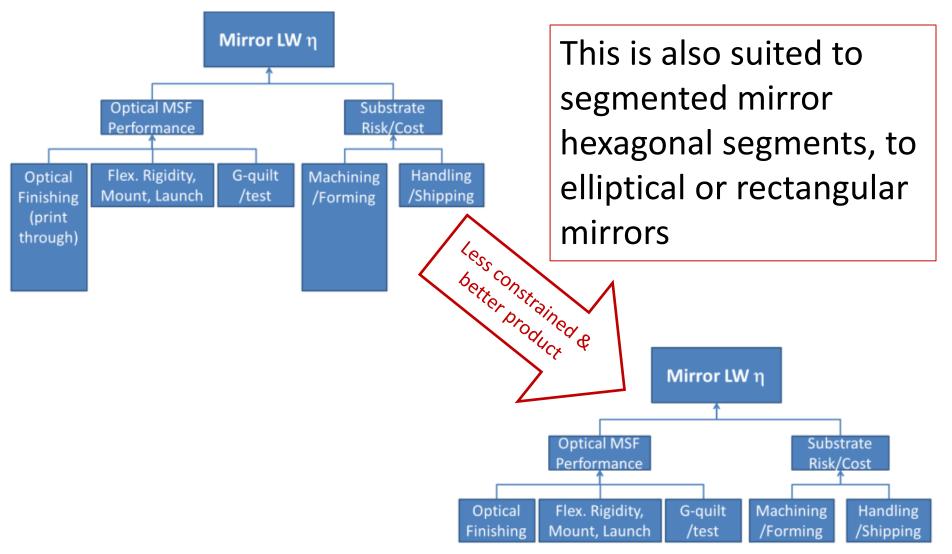
# Extreme Lightweight ZERODUR® Mirror (ELZM) Objective

- Support efforts to ensure that ELZM is fully qualified to meet the requirements of Spaceborne Missions, especially those of ASTRO2020
- Support the space astrophysics and surveillance communities with a path toward affordable, short lead time lightweight mirrors

## **ELZM Scope**

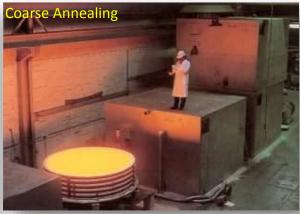

- SCHOTT will provide MSFC with its 1.2m mirror blank, and under NASA contract will construct supports and polish the mirror to interferometric capture range (~150nm rms)
- Under this contract, SCHOTT will support test and test interpretation.

- 1. Summary of AMTD-2
- SCHOTT Circumstances, Objective and AMTD Scope
- 3. What is ELZM?
- 4. Steps to be accommodated in AMTD-2
- 5. Overall Summary


# Approach to making affordable, lightweight mirrors

Starts with ZERODUR®

Several hundred metric tons are produced each year for precision applications. Reproducibility of quality is excellent.



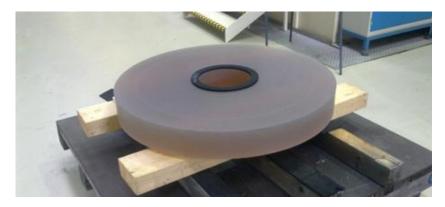

# Much lighter, affordable ZERODUR® Mirrors are available from 0.3m to >4m dia.



## ZERODUR®: Melting to Processing



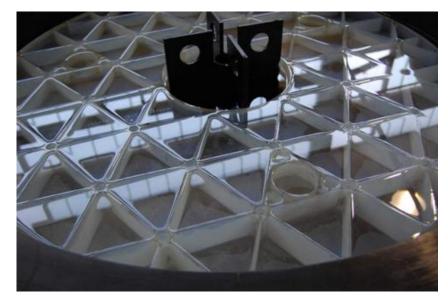








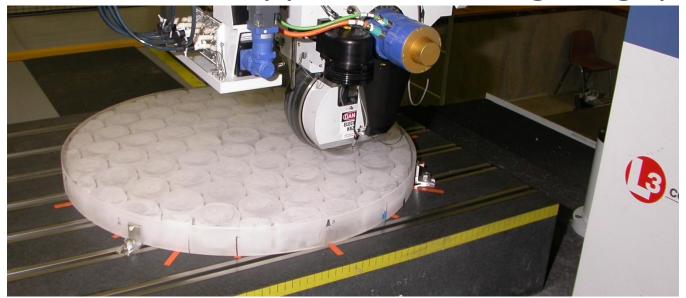


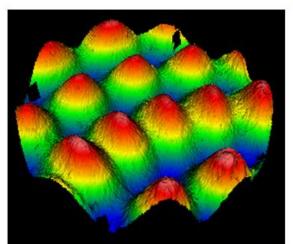


## Lightweighting Technology at SCHOTT

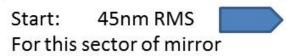


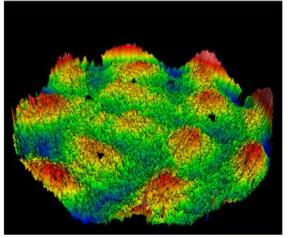
Prepare blank: plano-plano, facesheet generating and center hole



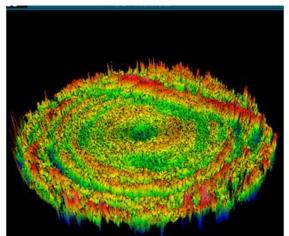

**Pocket grinding** 





Acid etching to remove subsurface damage

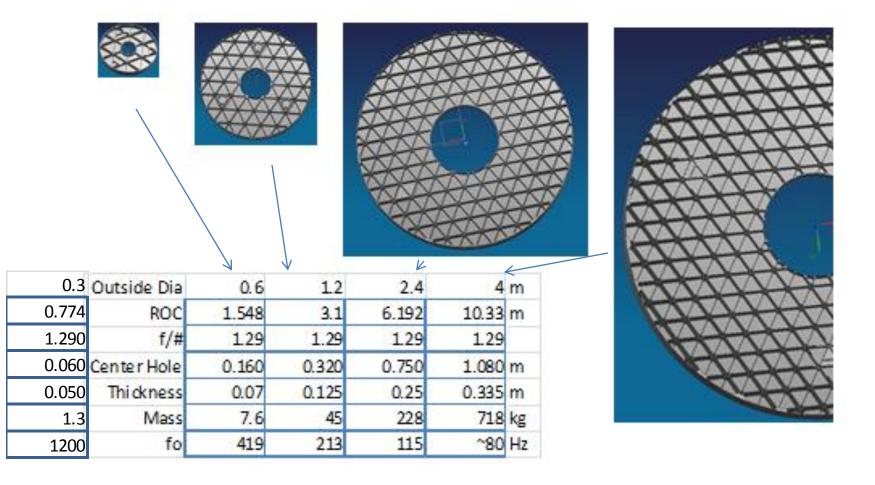

**R1** grinding

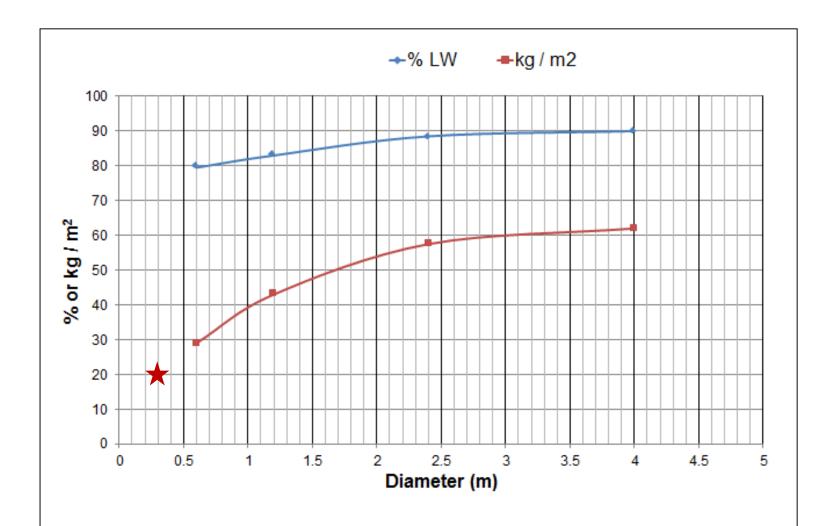
Deterministic (MRF, IBF, CCOS etc.) optical finishing is one "thin facesheet" approach to mitigating quilting









1<sup>st</sup> Run: 6.0nm RMS 10.3 hours on machine 1m φ

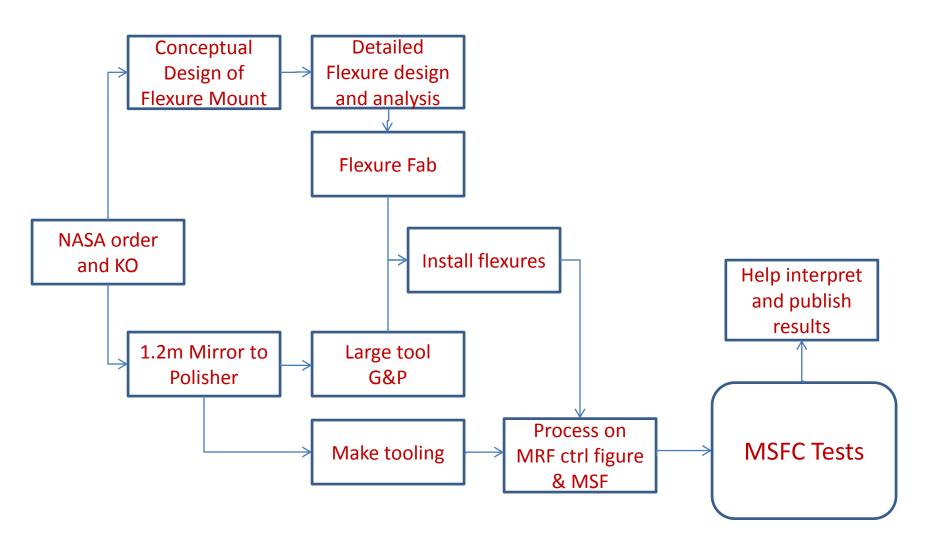


2<sup>nd</sup> Run: 2.5nm RMS 2.4 hours on machine 1m φ

### Results from 0.3m to 4m Mirrors






**Using these methods,** 4 practical cases are analyzed. Each is practical and could be built now. Other than 2 mm ribs, the mirrors were optimized for cost-effective fabrication.

# As built 0.3m and 1.2m Lightweight ZERODUR® Mirror Blanks



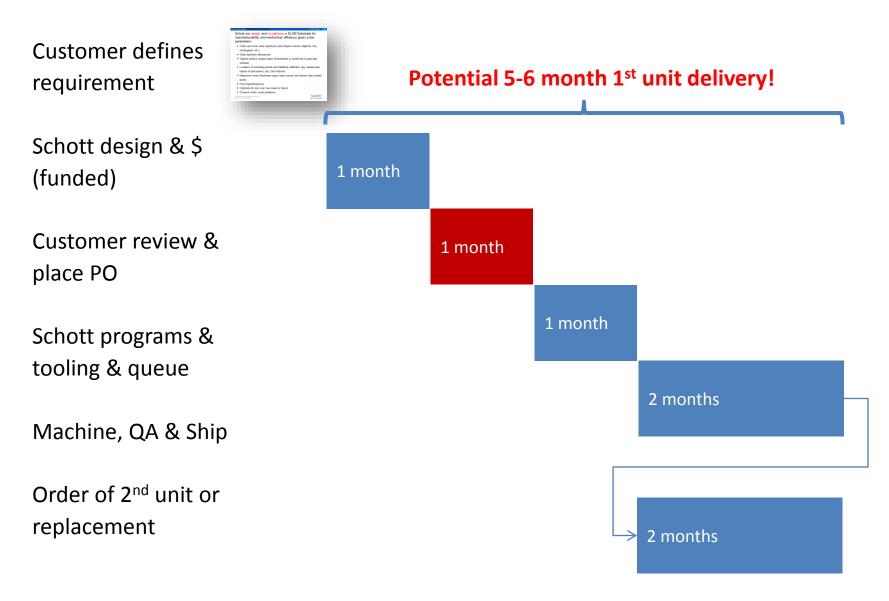
- 1. Summary of AMTD-2
- SCHOTT Circumstances, Objective and AMTD Scope
- 3. What is ELZM?
- 4. Steps to be accommodated in AMTD-2
- 5. Overall Summary

## SCHOTT proposed support to AMTD-2



- 1. Summary of AMTD-2
- SCHOTT Circumstances, Objective and AMTD Scope
- 3. What is ELZM?
- 4. Steps to be accommodated in AMTD-2
- 5. Overall Summary

ELZM is a non-developmental, costeffective approach to mirrors


- → widens solution space
- → enables more desirable science solutions



- The approach can yield a very smooth mirror or mirror segment with exceedingly low response to thermal environments
- SCHOTT can make flight-like isogrid lightweight mirror blanks now using this technology
- Blanks up to 4m diameter are being produced



# Example Manufacture Schedule for a 1.2m ELZM Mirror



Appreciation to Phil Stahl, and Michael Effinger at MSFC for including Lightweight ZERODUR® in AMTD-2, and Thomas Westerhoff, John Pepi, and Mike Valois for their assistance in this paper.



### www.us.schott.com/advanced optics

#### **Tony Hull**

Adjunct Professor of Physics and Astronomy University of New Mexico 510-672-2499 Mobile 505-771-8566 Land tonyhull@unm.edu

### Tara Maggiano

Development Manager SCHOTT North America, Inc. Advanced Optics 570-446-4233

Tara.maggiano@us.schott.com

### **Relevant Papers**

- 1. Hull, T., T. Westerhoff, A. Leys, J. Pepi; "Practical Aspects of Specfication of Extreme Lightweight ZERODUR® Mirrors for Spaceborne Missions" d Proc. SPIE Vol 8836-6, 2013)
- 2. Hull, T., Westerhoff, T., Pepi, J., Jedamzik, R., Gardopee, G., Piche, F., Clarkson, A., Leys, A., Schaefer, M., Seibert, V. "Game-changing approaches to affordable advanced lightweight mirrors II: new cases analyzed for extreme ZERODUR® lightweighting and relief from the classical polishing parameter constraint", Proc. SPIE Vol 8450 8450-186 (2012)
- 3. Hull, T., Beasley, M., Kendrick, S., Ebbets, D., Lipscy, S., Lee, A., Barentine, JB, Pepi, J., "Practical Steps toward Spaceborne UV Telescopes beyond HST", Kauai Conference on UV Astronomy: HST and Beyond Website (2012)
- 4. Hartmann, P., Jedamzik, R., Westerhoff, T., "Zero-expansion glass ceramic ZERODUR® Recent developments reveal high potential", Proc. SPIE Vol. 8450, 8450-83 (2012)
- 5. Hull, T., Clarkson, A., Gardopee, G., Jedamzik, R., Leys, A., Pepi, J., Piché, F., Schäfer, M., Seibert, V., Thomas, A., Werner, T., Westerhoff, T., "Game-Changing Approaches to Affordable Advanced Lightweight Mirrors: Extreme ZERODUR® Light weighting and Relief from the Classical Polishing Parameter Constraint" Proc. SPIE Vol. 8125, 8125-30 (2011)
- 6. Hull, T., Hartmann, P., Clarkson, A., et al. "Lightweight high-performance 1-4 meter class spaceborne mirrors: emerging technology for demanding spaceborne requirements", SPIE Proceedings Vol. <u>7739</u>, 7739-118 (2010)
- 7. Döhring, T., Jedamzik, R., Thomas, A., Hartmann, P., "Forty Years of ZERODUR® mirror substrates for astronomy; review and outlook" Proc. SPIE Vol. 7018, 70180P (2008)