

High-resolution detector for at-wavelength metrology of X-ray optics

<u>Bipin Singh</u>¹, Harish B. Bhandari¹, Julia K. Vogel², Michael J. Pivovaroff², Brian D. Ramsey³, and Vivek V. Nagarkar¹

- ¹ Imaging Technologies and Applications Group, Radiation Monitoring Devices, Watertown, MA 02472
- ² Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550
- ³ Marshall Space Flight Center, NASA, VP62, Huntsville, Alabama 35812

NASA Tech Days, October 1, 2013 NASA SBIR Grant NNX12CA83C

RMD, Imaging, Speed – A historical perspective

published in 1872. Stanley brothers were two American inv manufacturers who built the Stanley steamer ed automobiles. T most famous steam-pov were identical twins Francis Edgar Stanley (1849-1918) and F Stanley (1849-1940) were born in Kingfiel they formed the Stanley Dry Plate Co ture a formula that Francis had deve plate photography. They patented machine in 1886. In 1904, they sol man Kodak Company Meanwhile, the Stanleys with steam engines, and in ley steamer. They organ market the cars but sole rights, to the Locon stanleys bought ba formed the Stanle publicity, they be 1906, one of the ters) per hou speed of 2 m Sales of omobile came ir and th zed und killed in an inued to be ma See also Autor

RMD, Imaging, Speed – A historical perspective

Outline

- Program overview
- Structured scintillators
 - Advantages
 - Fabrication methods (vapor deposition, e-beam deposition, laser pixelation)
- Detector
 - Design
 - Specifications
 - Evaluations
- Software
 - Single photon detection algorithm
 - Simulation and analysis
- Conclusions

- Phase I Goal:
 - Demonstrate the feasibility of developing a high resolution detector for at-wavelength metrology of X-ray optics.
- Phase II Goal:
 - Develop a prototype high-resolution detector for at-wavelength metrology of X-ray optics, fully characterize its performance, and deliver it to NASA.

The Team

- RMD
 - Detector design and development
 - Scintillator fabrication
 - Detector design and fabrication
 - System integration
 - Evaluations and feasibility studies
- LLNL
 - NuSTAR X-ray optics calibration
 - Application-specific needs
 - Single-photon counting algorithms
 - Detector evaluation

Detector requirements for NuSTAR mission

- High spatial resolution (~25 μm)
- Operation over a large energy range (5 keV to 100 keV +)
- High sensitivity to X-rays (~100% to >70%)
- Large active area (~5×5 cm²)
- High count rate capability (10⁵ events/second)
- Flexible design / adaptable to various mission requirements
- Ease of operation

Our Solution

• Combine a low-noise EMCCD camera with a high performance structured scintillator

EMCCD block diagram

Microcolumnar CsI:Tl film

Resulting test image

EMCCD advantages

- Commercially available
- Proven technology
- Low-light imaging
- No readout noise
- High spatial resolution
- High quantum efficiency
- Solid-state technology

Detachable 3:1 fiberoptic taper

RMD Customized EMCCD Camera

Business Sensitive

 High absorption (mm/cm thick material).

Poor spatial resolution (wide light spread).

Poor absorption
(µm thin material).

High spatial resolution (limited light spread).

 High absorption (mm/cm thick material).

High spatial resolution (channeling of the light).

- Vapor deposition
 - Scintillators for X-ray imaging
 - Scintillators for neutron detection and imaging
- E-Beam deposition
 - Thin film scintillators for microtomography
 - High temperature materials that cannot be evaporated
- Hot wall evaporation
 - Scintillators for gamma ray detection and spectroscopy.
 - Scintillator fabrication with dopant gradient, novel formats and shapes
- Isostatic pressing and sintering

Structure control in films

RMD columnar CsI:Tl films

RMD has pioneered development of microcolumnar CsI:Tl for digital radiography.

Business Sensitive

Versatility of vapor deposition

CsI:Tl deposition and comparison

Fiberoptic taper

Graphite substrate with reflector

Fiberoptic taper with CsI:TI

Graphite substrate with reflector and CsI:TI

CsI:Tl film morphology

Direct deposition on fiberoptic taper

Deposition on conventional substrate

Aluminum reflector

Silver reflector

Silver reflector: 30% brighter than aluminum. Similar MTFs.

J8734 HL: 150 µm thick; 70 kVp, 10 mA, 10 Pulses

Alternate deposition approach

Crystalline microcolumnar CsI:Tl films

Conventional amorphous microcolumnar CsI:Tl films

Business Sensitive

Properties of scintillation materials

Scintillator	Density (g/cm³)	Effective Z	Light Yield (photons/MeV)	Emission Wavelength (λ_{max})	Decay Time (ns)
Gd ₂ O ₂ S:Tb *	3.7	59.4	58,000	545	558 µs
CsI:TI	4.53	54	62,500	540	680
Ba₂Csl₅:Eu	5.04	54	97,000	450	1,500
Gdl ₃ :Ce	5.2	56.59	89,000	563	33
Srl ₂ :Eu	4.55	49.85	115,000	435	1,200
Yl ₃ :Ce	4.6	50.8	98,600	549	34
Cal ₂ :Eu	3.96	50.16	86,000	470	790
Lu ₂ O ₃ :Eu	9.5	67.3	30,000	610	1,000 µs
Lul ₃ :Ce	5.6	59.7	115,000	540	28

Properties of various bright scintillators for hard X-ray imaging Highlighted materials are grown in microcolumnar form at RMD

Alternate scintillator

- Ba₂Csl₅:Eu
 - Light yield: 97,000 ph/MeV
 - Emission: 400 to 600 nm
 - Density: 5.06 gm/cc
 - Decay time: 1.5 microsecond
 - Afterglow: Negligible

Business Sensitive

Alternate scintillator

Ba₂CsI₅:Eu High Brightness

NuSTAR calibrations at Nevis Laboratories

NuSTAR calibrations

PSF of NuSTAR Flight Module 2, obtained using RMD's detector.

Comparison of data acquired with the RMD detector and that simulated using the NuSTAR ray-trace simulation; X-ray source located 8 arc minutes off axis

The excellent agreement was used to tune and validate the ray-trace simulation

Business Sensitive

Phase II detector design

- Design input from Phase I results
- Wide range of applications require design flexibility to replace scintillators in convenient manner
 - Pressure coupling of scintillators is preferred
 - Field replaceable
 - Permits scintillator selection for low- and high-energy X-rays
 - Graphite substrates with silver reflectors
 - AMS/CMS CsI:Tl films
 - AMS/CMS Ba₂CsI₅ films
- EMCCD Detector
 - Larger pixel array (1024×1024)
 - 1:1 fiberoptic plug bonded to the EMCCD chip
 - Replaceable 3:1 fiberoptic taper

Detector SNR with CsI:Tl

EMCCD - Fiberoptic Taper Configuration	1:1	2:1	3:1	4:1
Active imaging area (square detector side dimension, mm)	13.3	26.6	39.9	53.3
Effective pixel size (μm ²)	13x13	26x26	39x39	52x52
CsI:TI light output (Ph/MeV)	60,000	60,000	60,000	60,000
Incident gamma ray energy (KeV)	8	8	8	8
Screen light output	480	480	480	480
Light toward the CCD (70%)	336	336	336	336
Fiberoptic stub and taper transmission efficiency (%)	100 *	25	11	6
Light photons Incident on CCD	336	84	37	21
Signal spread over number of pixels (N)	4x4	2x2	2x2	2x2
Signal per pixel (S)	21	21	9	5
EMCCD QE (%) (QE/excess noise factor F)	79	79	79	79
Electrons generated at each pixel (S*QE)	17	17	7	4
Electron Multiplying CCD gain (G)	40	40	40	40
No. of electrons/pixel after on-chip multiplication gain (S*QE*G)	665	665	293	166
S _{tota} l: Total electron signal per event (S*QE*G *N)	10,640	2,660	1,170	665
Excess noise factor (F)	1.2	1.2	1.2	1.2
Photon (shot) noise G*F*SQRT(S*QE)	196	196	130	98
Total dark-related signal (e-/pixel/frame) (D)	0.1	0.1	0.1	0.1
Dark noise G*F*SQRT(D)	18	18	18	18
Read noise e- rms (σR)	40	40	40	40
Total Noise Per Pixel (orpixel)	201	201	137	107
Total System Noise (σ _{Total})	557	395	265	203
Signal-to-noise ratio (SNR) S _{Tota} l/o _{Total}	19	6.7	4	3

Comparison of detector SNR with alternate scintillators

			\wedge	
Signal-to-noise Ratio (SNR) S_{Total}/σ_{Total}	1:1	2:1	3:1	4:1
AMS CsI:TI with aluminum reflector	19	7	4	3
AMS CsI:TI with silver reflector	22	8	5	4
Ba ₂ Csl ₅ :Eu with silver reflector	28	10	7	5

Andor iXon[™] DU 888 EMCCD specifications

Parameter	Specification
EMCCD Pixel Resolution	1024 × 1024 pixels
EMCCD Pixel Size	13 μm × 13 μm
EMCCD active area	13.3 mm × 13.3 mm
Pixel well-depth	80,000 <i>e</i> ⁻
Gain register pixel well-depth	240,000
Electron multiplication gain	1-1000
QE at 540 nm (CsI:Tl emission)	95%
Operating temperature (OT)	TE-cooled to -95°C
Dark noise at OT	<<1e ⁻ /pixel/second
Read noise at 10 MHz readout	<1 <i>e</i> ⁻ at gain = 40

Parameter	Specification
EMCCD Pixel Resolution	1024 × 1024
EMCCD Pixel Size	13 μm
Scintillator-EMCCD Coupling	Via 3:1 coherent fiberoptic
Detector Active Area	39 x 39 mm²
Intrinsic System Resolution	$39 \times 39 \ \mu m^2$
Frame Rate	10 fps (full frame) to >500 fps (binning)
Low X-Ray Energy Scintillator	<100 μ m thick microcolumnar CsI:Tl
High X-Ray Energy Scintillator	>400 μ m thick microcolumnar CsI:Tl

The Customized Phase II Detector

Algorithm development

Benefits of X-ray photon counting approach:

- Higher resolution
- Energy Information

Single-photon imaging

Raw data

Algorithm applied

Alternate view

Algorithm development

¹⁰⁹Cd, 22 keV

²⁴¹Am, 59.5 keV

- 450 mm thick AMS CsI:Tl aluminum-backed graphite plate used for algorithm and test.
- Lower energy range challenging.
- Tune scintillator thickness to incident energy.
- Brighter scintillators.

Single-photon counting algorithms

- First data acquired using new scintillator
- Shown here: ⁵⁷Co source events observed with EMCCD and scintillator B80-22 using a 3:1 taper
- Single-photon counting algorithms written in IDL
- Optimization of various cuts to discriminate between signal counts and noise is ongoing
- First results look promising for various energies

Phase II Tasks	Status
Investigate brighter scintillators and morphology	V
Purchase customized EMCCD, 3:1 FO taper and 1:1 FO plug	V
Mechanically bond FO plug to EMCCD chip	V
Mechanically integrate system	V
Develop photon-counting software algorithm	Ongoing
Integrate software algorithm with data acquisition and imaging workflow	Ongoing
Test detector at RMD	V
Test detector at NASA X-ray facility	Planned

Summary

- Developed highly structured CsI:Tl layers on fiberoptic tapers
 - Characterized scintillator performance
 - Assembled the EMCCD detector, including software
 - Demonstrated high-resolution X-ray imaging with photon counting
- Demonstrated feasibility through NuSTAR optics calibration at Nevis Laboratories
 - Evaluated alternate scintillator approaches for enhanced sensitivity, including:
 - Crystalline microcolumnar CsI:Tl
 - Novel Ba₂CsI₅:Eu scintillator
- Developed single-photon counting algorithms

