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Impact of SSD and Stress in SiC

• SiC of interest for space based optics

– Stiff, light weight with high thermal conductivity 
and low CTE

• SiC is very hard; requires significant tool 
pressure during grinding

• Stress can adversely impact the figure at 
cryogenic temperatures

• SSD microcracking introduces scatter, reduces 
the strength which could lead to failure



Description of Experiment

• Stress in CVD SiC was compared for various 
processing conditions by measuring the deflection 
due to the Twyman Effect

• The depth of the subsurface damage (microcracks) 
was measured for the various processing steps using 
MRF

• Comparisons were made for surfaces lapped with 3 
µm diamond on a cast iron plate, 3 µm diamond 
polished on polyurethane pad, 1 µm diamond 
polished on a pad, chemically etched, and 
magnetorheologically finished (MRF) and laser 
ablation.

• SSD is measured using a MRF Spot Technique



Twyman Effect

Twyman observed that a flat, 
high aspect ratio part double 
side polished will bow when one 
of the two surfaces is lapped as a 
result of the difference in stress 
between the two surfaces

• Lapping induces compressive 
stress causing the ground 
surface to be convex

• Stoney’s Equation for thin 
films can be applied to calculate 
the stress if the damage layer 
thickness is known
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where h is the thickness, R is the resulting 

radius of curvature, and t is the thickness 

of the damaged layer



SiC Sample Preparation

• TREX CVC SiC 50.8mm 

dia. Thickness  ~1mm

• Coupons were wire sawn 

using 20-35 µm fixed 

abrasive diamond 

(resulting in 7 µm PV) 

followed by double side 

lapping and polishing 

(DSL/DSP) using 

sequentially finer abrasives

Diamond 

Abrasive 

Size

Material 

removed

Surface 

Roughness*

(PV)

Lapping using steel plate

6 µm >15 µm ~300 nm

3 µm ~4 µm ~65 nm

Lapping using polyurethane pads

3 µm ~4 µm ~50 nm

*Zygo NewView 5000, 20X Mirau, Min/Mod: 

5.0, 660X880 µm Field of View



SiC Wafer Figure generated at EOC

Wafer 

Group

Double Side 

Polish 

Parameters

DSP Figure

(Power)

Single Side 

Polish/Lap 

Parameters

Final Figure

(Power)

1 3 µm dia./pad

23kPa down 

pressure

-0.195-
-0.505 µm

3 µm dia./steel

9.8 kPa down 

pressure 

50 rpm tool spindle

>10 µm removed

-2.75--2.357 µm (CX)

2.346-2.783 µm (CC)

2 1 µm dia./pad

23kPa down 

pressure

-0.694-
-1.284 µm

3 µm dia./pad

9.8 kPa down 

pressure 

50 rpm tool spindle

-6.18--7.195 µm (CX)

0.143-0.627 µm (CC)

3 1 µm dia./pad

23kPa down 

pressure

-0.717-
-1.225 µm

N/A N/A



Wafer Polishing at QED using MRF

• MRF can remove uniform layers of material at 

specific removal depths without attention to pre-

existing wafer bow

– Diamond based MR Fluid was used

– Parts held by vacuum using an acrylic backing plate

– Each polishing step removed 100 nm

– For each polishing step figure was measured with an 

interferometer to observe relaxation of the Twyman Effect

• 3 SiC wafers with different surfaces were polished and 

measured at QED



Chemically Etched SiC

• 3 µm diamond double side polished3 µm single side lapped 

on steel (>10 µm removed)

• Chemically etched on single side lapped until wafer relaxed

– Two orthogonal line scan indicate surface nearly identical

– Change in power is most likely due to Zernike calculation

– 100 nm additional material removed to verify no change in figure

– Final roughness: 1300 nm PV, 14 nm rms after 200 nm removal

Power = 1370 nm Power = 530 nm



3 µm DSP with 3 µm SSL on Steel

• Power changes 2730 after 100 nm of material removal using 

MRF

• Removal of 100 nm from the compressive surface results in 

the stress in each surface inverting (i.e. the compressive side 

becomes tensile and vice versa 

Initial 

Power = -2230 nm

After 100 nm

Power = 500 nm



2nd Polishing Iteration: 200 nm removed

• Total of 200 nm removed using MRF

• MRF continues to remove stress from lapping with 3 µm 
diamond on steel

• Surface being MRF polished has less stress than 3 µm double 
side lapped surface 

After 100

Power = 500 nm

After 200 nm

Power = 1430 nm



2nd Polishing Iteration: 300 nm removed

• Surface has reached its final figure, subsequent 
polishing will not cause figure deformation

• 3 µm diamond polish renders an SSD layer between 
100-200 nm thick

After 200 nm

Power = 1430 nm

After 300 nm

Power=1420



Improved Roughness from MRF

Initial

PV=956 nm

Rms=9.1 nm

300 nm removed

PV=323 nm

Rms=2.6 nm

• Roughness improved by >3X from 300 nm removed

• Better finish possible with additional material removal



1 µm DSP followed by SS MRF

Initial

Power = -950 nm

After 100 nm

Power = -580 nm

After 200 nm

Power = -620 nm

• Results show that a 1 

µm diamond polish has 

stress compared to 

MRF, the surface is 

moving from CX to CC

• Damage occurs within 

100 nm of the surface 

for 1 µm diamond 

polishing

• Initial roughness:2.4 

nm rmsFinal 

roughness: 1.8 nm rms



Twyman Stress vs. Roughness and Material 

Removed

Power vs. Material Removal
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Twyman Effect Conclusions from MRF

• Stress scales with abrasive size for 
conventional lapping and grinding processes, 
but does not scale for chemical processes

• MRF reduces stress similarly to chemical 
etching, i.e. no observable change in wafer 
bow when MRF removed 200 nm of material 
from the chemically etched surface

• 3 µm and 1 µm polished surface have 100-
200nm and <100 nm thick stress layers



Picosecond Ablation of SiC

• Polished disks of Trex SiC have 
compressive stress on each face before 
ablation.

• Ablative removal of ~200 nm appears to 
completely relieve compressive stress on 
sample face.

• Figure shows evolution of the shape of each 
face with successive ablations.

• Laser is ablating away damaged material 
w/o propagating or creating damage.

• Studies underway removing much thinner 
layers of material (~20 - 50 nm) to study 
depth profile suggest damage layer may be 
< 100 nm. 

Effect of picosecond pulsed laser ablation on Twyman stress of SiC.

Light Blue:  Original shapes of disc surfaces.

Dark blue:  After ablation (stress relief) of bottom face. 

Pink:  Ablation of top face restores original shape.

Yellow: Subsequent ablation of top causes no 
further change.  Stress is fully relieved.
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Subsurface Damage (SSD)

Subsurface Damage is the top layer of a bulk material 

that has discernable differences from the bulk as a 

results of surface processing

• SSD can contain microcracks from brittle material 

removal from grinding, and residual stress 

surrounding crack tips or from plastic deformation 

from ductile grinding or polishing



SSD Measuring Techniques

• Destructive: Taper polishing, Etching, Fracture 

Mechanics

• Non-Destructive Evaluation (NDE):X-ray 

diffraction, Scanning Acoustic Microscopy, 

Raman Spectroscopy, Birefringence, 

Photothermal Microscopy

– Many of these techniques are qualitative, do not 

provide an accurate depth of SSD



SSD Measurements using MRF

• SSD measurements are taken using MRF spots to 

penetrate through SSD and calculate depth base on 

surface roughness and spot profile

– MRF spots are taken at sequentially deeper depths until past 

the depth of SSD

– Surface roughness measurements using a white light 

interferometer are made within the deepest region of the spot

– Roughness decreases as the spot depth increases.

– The depth of SSD is determined when the roughness levels 

and the spot is measured with an interferometer or 

profilometer



Measuring Spot Profiles

• Previous work shows a strong correlation between 
surface roughness and SSD-Good estimate of the 
required spot depth

• Applying this correlation spots with depths <0.5 µm 
can be profiled using an optical interferometer

MRF Spot Profile measured with an interferometer against a flat reference



Measuring Large Spots with Contact 

Profilometer

Spot profile from contact profilometer

• Interferometer scans 

within the deepest area 

of the spot are taken in 

a vertical and horizontal 

orientation to due to 

interferometer 

limitations

• Five line scans are 

collected within each 

spot, resulting in scan 

parallel and 

perpendicular to the 

fluid flow direction

• Roughness Data 

collected with NewView 

5000, 20X Mirau 

Objective, 0.35X0.26, 

MinMod:3%



SSD Measurement Procedure

• 3-6 spots are placed on each surface depending on the 
surface roughness

• 5 random surface roughness measurements were collected 
within the deepest depth of penetration (ddp) parallel (║) to 
direction of flow and perpendicular (┴) to the direction of 
flow

Spot # Time 

(min)

ddp (µm) Removal rate 

(µm/min)

PV (nm) Rms (nm)

As received NA NA NA 1520 337.7 14 5.0

1 1 0.22 0.22 1261 368.5 114 0.8

2 2 0.34 0.17 258 56.9 16 1.8

3 6 1.32 0.22 139 19.7 23 6.14

4 18 2.86 0.16 129 13.7 21 5.5

5 36 5.95 0.17 181 16.9 31 4.7



SSD of Etched and Lapped Surfaces

Depth of SSD is ~6µm.  Etching has 

shown to be damage free; therefore, 

the depth is driven by surface 

roughness, not SSD.

Depth of SSD is ~1.5 µm.  

Chemical Etched Surface 3 µm lapped on steel



SSD Depth for Polished Surfaces

• Roughness increases as MRF removes material

• Spots are placed without part rotation with long dwell times, which causes 

increased roughness

• Destructive techniques have a resolution of ~ 0.5 µm, therefore SSD depth of 

~1 µm is the low threshold 

3 µm lap 1 µm lap



Summary

• Stress can be noticed in surfaces polished with 
diamond abrasives as small as 1 µm

• SiC lapped against steel with 3 µm diamond 
results is SSD depth of ~1.5 µm

• Twyman Effect shows the difference in stress 
between 3 µm diamond and 1 µm diamond 
polishing and that MRF relieves stress from 1 
µm diamond

• SSD can not be measured using MRF for 3 µm 
and 1µm diamond polishing
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