

**TECHNOLOGIES, CERTIFIED COACH, B2B M&A** "OUR BUSINESS IS TO HELP YOU SOLVE YOUR PROBLEMS"

3D Printed Silicon Carbide Scalable to Meter-Class Segments for Far-Infrared Surveyor NASA Contract NNX17CM29P

SPIE Mirror Technology Days November 14, 2017

Dr. Bill Goodman, President & CEO 505.400.8169 bgoodman@goodmantechnologies.com





#### Historical Accomplishments Prior to July 2016

- Provided Breakthrough Technologies in Dimensionally Stable CMCs for NASA and MDA for Space and Aerospace Applications
- Lead Materials Process Development for Uncooled Optics for High Energy Laser Systems (SBL, THEL, ABL, etc.), FSMs, Deformable Mirrors
- Telescopes for Space and Airborne Applications
- Survivable Technologies for Cryo, Space, Nuclear, Laser

#### Goodman Technologies LLC (GT)

- SD/AM Technology> Ceramics & Ceramic Matrix Composites
- Coaching> Performance & Results for Business/Individuals
- Mergers & Acquisitions, Growth Capital for Middle Market

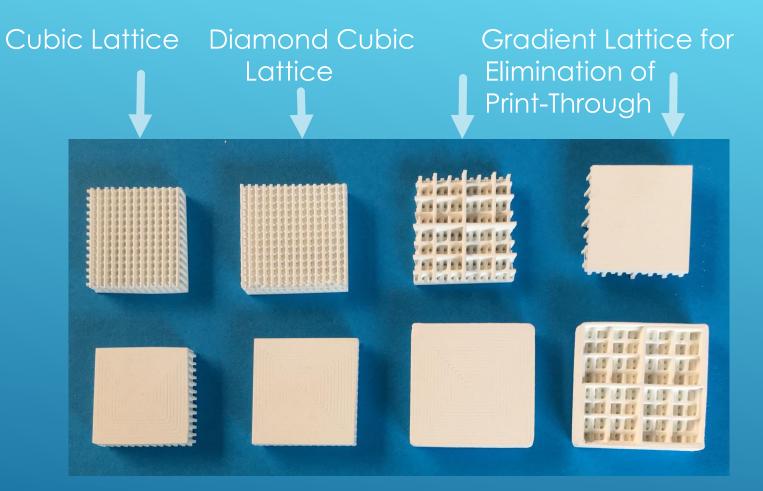
## OUTLINE



- Univ of Hawai'i (Minority Serving Institution)
  - ▶ Mehrdad Nejhad, Ph.D., Professor, Past-Department Chair M.E.
  - Founding Director: Hawai'i Nanotechnology & Renewable Energy, Composites, & Smart Structs. Labs., Associate Editor: Journal of Thermoplastic Composite Materials
- Small Business Partners: Materials and Processes
- New Mexico Small Business Assistance (NMSBA) Grant
  - Backreach to Sandia National Laboratory
  - Ceramics, CMCs & Multiple Types of Additive Manufacturing & 3D Printing

#### KEY PARTNERSHIPS IN ACADEMIA, INDUSTRY AND RESOURCES OF NATIONAL LABORATORY



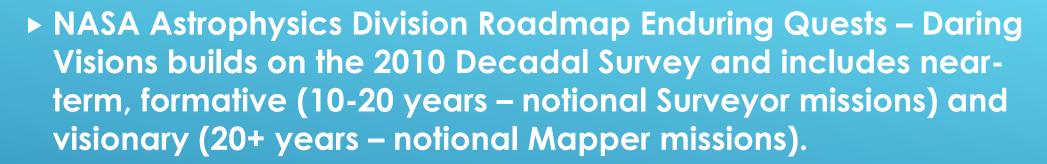

#### ► IRD Analysis for 1.5-meter SiC Segment showed:

- ▶ If you Print on Ground: Areal density of 7.75 kg/m<sup>2</sup>
- ▶ Print in Space  $\rightarrow$  1 kg/m<sup>2</sup>
- ▶ Cost to Print of \$60K/segment  $\rightarrow$  Space Maybe \$10K
- Optical Surface tailorable to nanometer-scale tolerances
- Encapsulated lattice construction provides uniform CTE throughout the part for dimensional stability, incredible specific stiffness, and the added benefit of cryo-damping. GREAT FOR MIRRORS AND STRUCTURES.
- ► Process allows direct embedding of electronics for active structures and segments, and the potential for actively cooling with helium for unprecedented low emissivity and thermal control (Analogous to the SLMS<sup>TM</sup> Technology Developed and Proven by Goodman & Jacoby 1998-2007)
- Process highly-suitable for printing mirrors in micro-gravity
- Provisional Patents Filed

## RESULTS OF GT INTERNAL RESEARCH AND DEVELOPMENT



0.5-m legacy SLMS



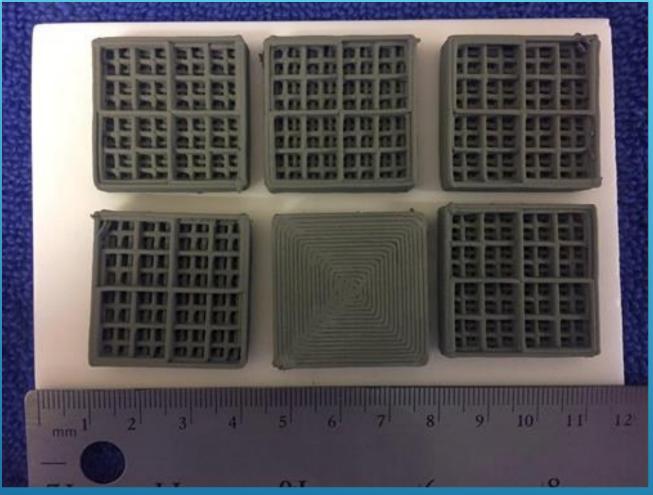

FEASIBILITY OF PRINTED CERAMIC MIRROR SUBSTRATES DEMONSTRATED JULY 2016



- NASA Contract NNX17CM29P "3D Printed Silicon Carbide Scalable to Meter-Class Segments for Far-Infrared Surveyor"
- Demonstrate feasibility of 3D Printed low areal cost, ultra-lightweight mirrors and structures
- Technology Development Roadmap shows production of 1<sup>st</sup> meterclass mirror segments by 2020 Decadal Survey
- 1.5-meter hexagonal SiC segments will meet or exceed all NASA requirements for the primary mirror of a FIR Surveyor such as the Origins Space Telescope (OST), and may also provide a solution for the LUVOIR Surveyor
- ► New Technology Called RoboSiC<sup>TM</sup>

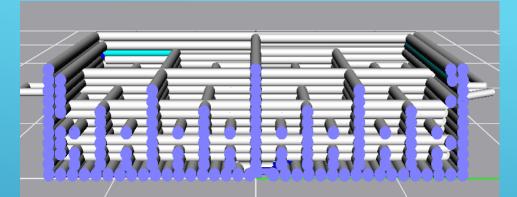
## NASA AWARDS GT PHASE I SBIR




- Assuming a 20-m aperture Far-Infrared Surveyor (Origins Space Telescope), a 16-m aperture LUVOIR Surveyor, and 500 m<sup>2</sup> collection area for the ExoEarth Mapper, then at least 1015 m<sup>2</sup> of mirrors are required by NASA in the next 30 years.
- At the NASA target price of \$100K/m<sup>2</sup> this represents a marketplace totaling over \$101M for the Mirrors alone.

#### NASA COMMERCIAL APPLICATION



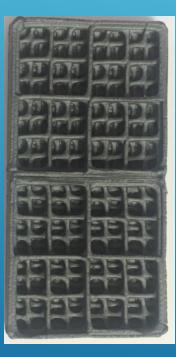

## SCALABLE TO LARGE PLATES/DEPTH 1.2 X 1.2 METER PROTOTYPE MACHINE

8



As-Printed and Cured. Feature sizes <0.8mm Also demonstrated joining in "green-state"

#### PHASE I NASA MID-TERM RESULTS




Gradient Lattice Structure: 100% dense facesheet (bottom layer) to ~27% dense, 11 total layers. Reverse Pattern to Close-Out Backside for Highest First Mode and Dimensional Stability (like a SLMS)



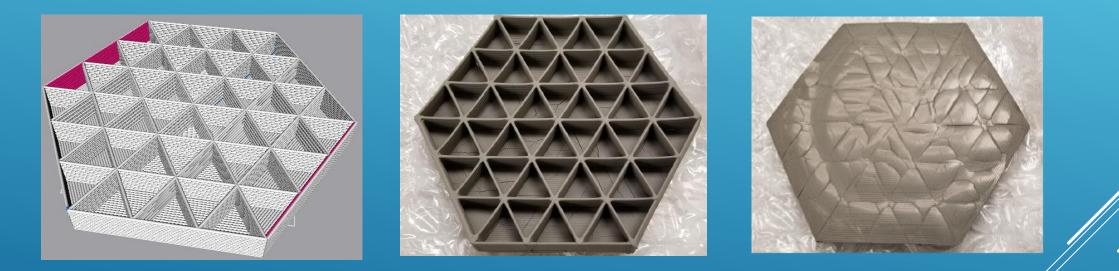
- Individual "ribbons or layers" are 0.8-mm in diameter, feature sizes even smaller
- Green-body machining demonstrated at Coastline Optics. Flat and parallel surfaces, knife edges 0.0001"
- Bake-Out Shrinkage: x, y (optical surface) = 0.60 0.62 mm (3%); z = 0.13 mm (1.8 %); Mass lost = 3 %
- Conversion to fully dense Reaction Bonded Silicon Carbide (3RB-SiC), Joining Demonstrated
- Can Additively Manufacture Complex Structures from Individual Components
- Process will allow repairing of items that could possibly crack







IR&D RESULTS: PRECISION LAPPING, JOINING & CERAMIZATION


- Cured, Baked and Siliconized Part with NO prior Green-body Machining
- Successful Grinding of Reaction Bonded SiC



#### IR&D RESULTS: CERAMIC GRINDING



- Printed 150mm Hexes with Isogrid. Why? Because Optics Folks Recognize the Pattern
- Guess What? Prints-Through During Curing Step (cracks, warp, delam)
- Potentially lots of ways to fix, but why?
- Isogrid Won't Give the SLMS-style Performance Behavior NASA Requires



## PROVEN AGAIN > GRIDS PRINT-THROUGH

12



- 60mm Square x 8.8mm w/Gradient Lattice
  - Equivalent to 32 ppi foam
  - Provides SLMS-Like Performance
  - High Specific Stiffness
  - Many Conduction Paths w/Facesheet
  - Square Arrays Easy for DMs to Map
- 30 min material prep, 20 minutes to print
  - One Small Machine Can Print 1.2m<sup>2</sup>/day
  - < 1-year to Print a 20m Aperture
  - Large Machine 2-months?
- Several Patent Pending Ways to Ceramize
- HUGELY Disruptive for the Optics Industry



3

BETTER BUILDING BLOCK FOR DIMENSIONAL STABILITY, SPECIFIC STIFFNESS AND/OR ACTIVE COOLING



- (as of 11/06/17) Phase I Ceramization In-Process at UH → 100% RoboSiC
  3<sup>rd</sup> Methodology to go with 3RB-SiC
- Phase II MATERIAL and PROCESS ENGINEERING:
  - Improve and Optimize Chemistry & Composition
  - Tailor Process for Large Prototype Machine
  - Combined 3D & Additive Manufacturing Approach for Large Structures
- Other Plans in Technology Roadmap:
  - Polish 3RB-SiC and RoboSiC at Coastline Optics
  - More Patent Pending Disruptive Technology Demos





- Successful track record pioneering new materials & processes
- GT has GREAT technology partners
- IP Secured with Provisional Patent Filings
- Tremendous Growth Potential Based Upon Optics and Other Identified Product Verticals and Markets
- GT is actively seeking Growth Equity Partner and Capital

