Phase I SBIR/STTR "Lightweight Materials For Mirrors and Aerospace Applications"

July 31.2007 Mirror Tech Days

Advanced Powder Solutions, Inc Randall Echols, Dean Baker Houston Texas (661) 373-1729 sales@apowders.com

Northwestern University M. P. Ulmer, S. Vaynman, M. E. Graham Evanston, Illinois (847) 491-5633

Overview

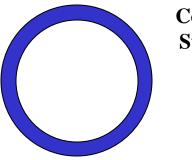
- □ APS Information
- **Technical Approach**
- APS Materials Results
- **Applications**
- ☐ Northwestern Replication
- Phase II Direction

APS, Inc/Northwestern Presentation

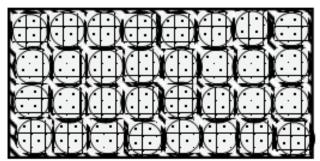
Company Overview

- Overview
 - Small Disadvantaged Business
 - Name, Location: Advanced Powder Solutions, TX, MD
 - Company Structure: S-Corp , Since 2005
 - Associations: UC Davis, IBM, Bell Helicopter, NASA- Marshall, & Goddard, Ohio State, Northwestern, and many others
- Company

Current products and services: metal coated micro-sized particles for electronics, PM parts, turbine, wear resistant materials, thermal spray, aerospace & military markets.


- Current Technical Discussion focused on 2 Main SBIR programs
 - Beryllium replacement material (Phase I MDA- Dr. Doug Deason), HQ0006-06-C7402
 - Lightweight Mirrors (NASA Phase I- Dr. David Content)
 NNG06LA41C

MTD July 31,2007


PM APPROACH/TECHNOLOGY ADVANTAGE

APS has demonstrated that improved control of chemistry at the atomic and powder level enhances the performance of existing compositions and enable the formation of new and improved compositions. The control of the composition and surface reactivity at the atomic level enables designers to tailor the properties for the final material.

Encapsulated Powder

Control Chemistry Surface Reactions Particles Can be Ceramic or Metal- Wide variety of Compositions or Coatings can be metal, ceramic, or combinations.

Consolidated Nano-Composite Control Phases, segregation, composition and chemical interactions during processing

> MTD July 31,2007

Final Composite tailorable properties: Thermal Conductivity. Electrical, Modulus, Expansion, Shielding, Tensile, or other desirable changes.

INITIAL MIRROR TECHNICAL APPROAH

Simultaneous Manufacture

Fabricate Substrate

Fabricate Mirror

Finished Product

MTD July 31,2007

SUBSTRATE DEVELOPMENT

Multiple Base Systems- at least 12 different compositions/variations

Fabricate Test Coupons

Machine Coupons

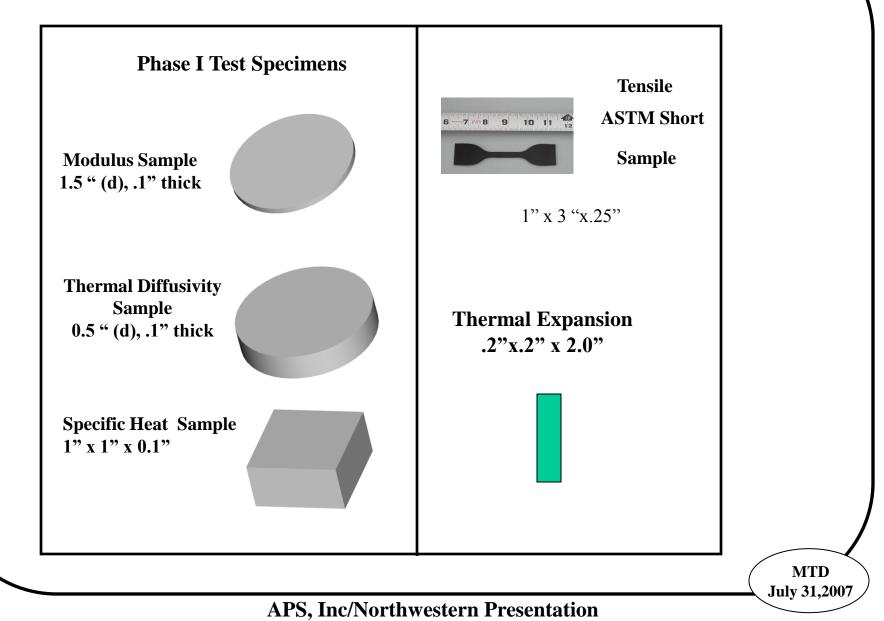
Characterization Testing

Downselect to Component- subscale, mirrors 3", 6" 12"

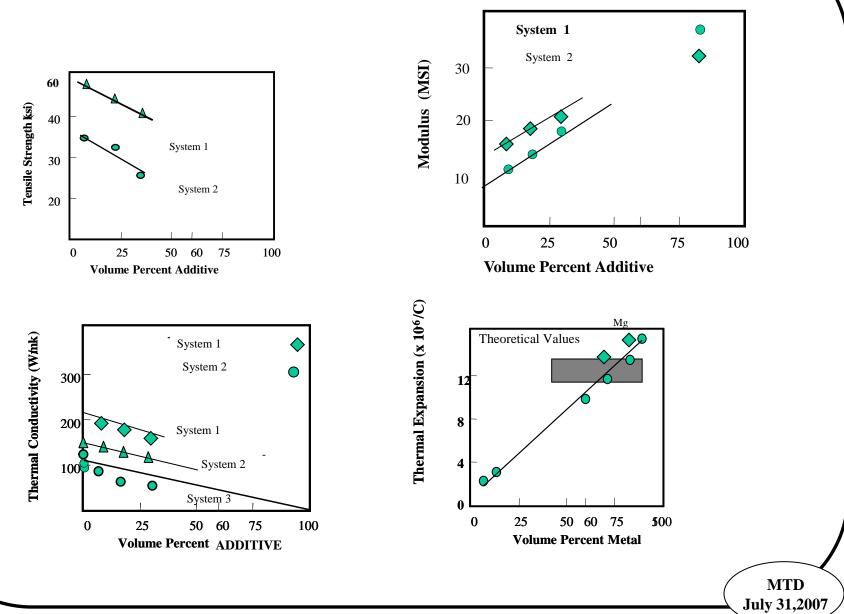
APS, Inc/Northwestern Presentation

MTD July 31,200'

Examples of Samples

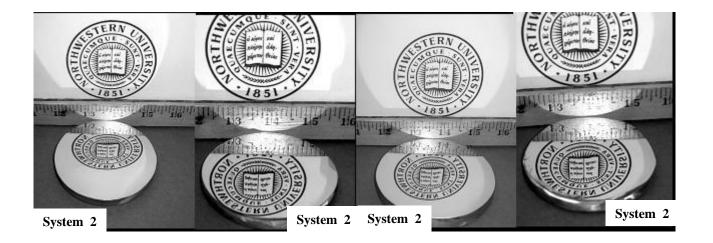


System 3



APS, Inc/Northwestern Presentation

Standard Phase I Tests (Room Temperature)



Two Example Systems

APS, Inc/Northwestern Presentation

Mirror Examples

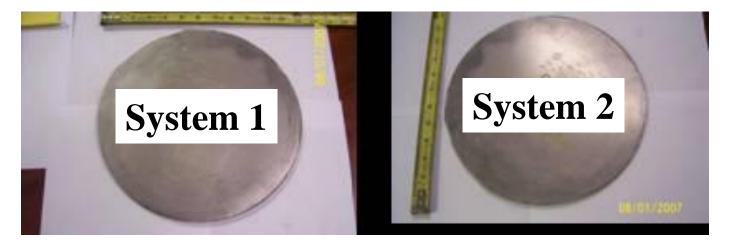
APS, Inc/Northwestern Presentation

EDM Parts

Lightweight Part with Machined Back

MTD July 31,2007

Mirror Techniques

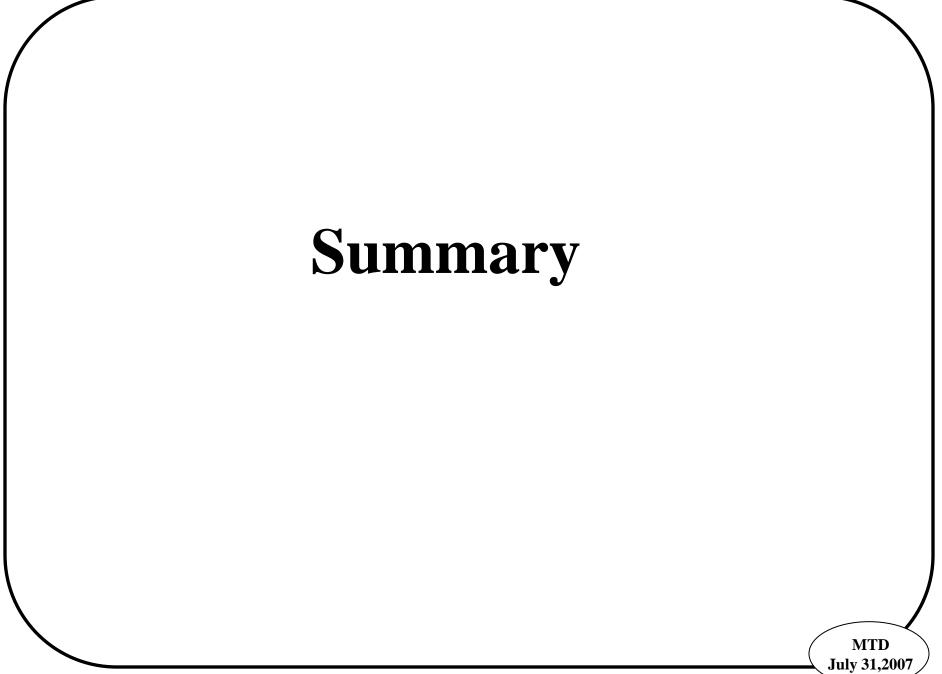

Replicate

Other Techniques CVD Plating/Electroless Plating

Grind Polish Diamond Turning

> MTD July 31,2007

LARGE SCALE MIRRORS



MTD July 31,2007

Additional Parts

Variation in Properties

Property	APS Composites	
Density (g/cm3)	1.0-3.0	
Modulus (MSI)	12-35	
.2% Yield Str (KSI)	22-90	
Elongation (%)	1-8	
Thermal Conductivity (W/m*k)	60-210	
CTE (ppm/C)	7-17	

APS, Inc/Northwestern Presentation

MTD July 31,2007

Phase I has Resulted in a Viable Material

APS
Composites

MTD July 31,2007

Shielding Aspects	Yes	
Lightweight	1.0-3.0 gm/cm3	
Manufacturing	6-10 Days	
Machinability	Yes	
Toxicity	No	
Joining	Yes	
Cost	Low-Med	
Modulus	Variable	
Isotropic	Yes	

NASA Northwestern University Team

Prof. Mel Ulmer: Has lead programs in X-ray optics replication, design, testing, multilayer application and characterization. Branched out into: light weight UV/Vis IR (Illinois large aperture telescope consortium) and deployable optics for Earth observing (with Ball Aerospace).

Research Prof. Mike Graham: Expertise in materials, coatings, ion etching, sputtering, plasma spraying (initial APS connection), surface characterization.

Research Prof. Semyon Vaynman: Expertise in electroforming, electrochemistry, materials, material analysis, and adhesion chemistry.

Future Work Phase II

More Mirror Specific Testing/ Larger Scale

Mirror Test/Coatings for specific requirements Vibration Thermal Distortion Machining Characteristics Hermetic Sealing and others

Larger Scale

- 1) 36" inch diameter mirror for Ground Based Astronomy
- 2) Specific Proprietary Parts with Primes