High-transmittance UVOIR space telescope prime focus concepts & technologies

J. B. Breckinridge^a and M. Flannery^b

10 November 2015

- a. Breckinridge associates, Pasadena, CA.
- b. Northrop Grumman Aerospace Systems, Redondo Beach, CA.

R. Polidan, J. Breckinridge, C. Lillie, H. MacEwen, et. al. (2015) An evolvable space telescope for future astronomical missions Proc. SPIE 9602-6

Background

- 21st century space astronomy needs twelve to twenty meter class space telescopes
- Requirements
 - Cost less than JWST
 - Performance to 100 nm UV wavelength
 - Coronagraph for imaging spectrometry @ 10⁻¹¹
 - Polarization preserving (0.01%)
 - ~4-arc minute FOV (or larger)

$$N = \left[\frac{FOV}{1.2\lambda/d}\right]^2 = 8.4 \cdot 10^8 \approx 4 \text{ giga-pixels}|_{\text{nyquist}}$$

How to

- Reduce cost
 - Minimize # of reflections (precision mechanical structures)
 - Implement the Evolvable Space Telescope (EST)
 - Prime focus
- Increase UV-Vis performance
 - Innovative optical design (imagers & spectrometers)
 wide FOV with fewer reflections
 - Polarization preserving configurations & coatings

How important is mirror count? Cost to recover mirror losses

- To fit our optical instruments into the telescopes of today, designers use lots of fold mirrors which absorb and scatter valuable radiation.
- Calculate the cost of light lost because of reflections.
 - Reflection losses reduce aperture
 - Cost to recover aperture to compensate losses

How important is mirror count? Cost to recover mirror losses

Unnecessary reflections are expensive

- A_e = the effective aperture
- d_e = diameter of the effective aperture
- A_T = telescope aperture
- d_T = telescope diameter
- $\tau = transmittance or$

reflectance

 $A_{e} = \tau A_{T}$ $\pi \frac{d_e^2}{\Lambda} = \tau \cdot \pi \frac{d_T^2}{\Lambda}$ $= d_{\tau}$ d_{a}

Reflection losses reduce the effective aperture of a telescope

# of normal incidence		A 10-m	A 2.4-m
reflections to detector	Tau for R=0.95	aperture is effectively	aperture is effectively
1	0.95	9.7	2.3
4	0.81	8.8	2.1
8	0.66	7.8	1.9
12	0.54	6.9	1.7
16	0.44	6.1	1.5
20	0.36	6.0	1.4
24	0.29	4.8	1.1
28	0.24	4.2	1

Assume a 10 meter telescope can be built for ~\$3B. What is the cost to recover the losses ?

# of normal incidence reflections to detector	Tau for R=0.95	Increase the 10m diameter to maintain SNR	Mission cost assuming cost=d^2.0
1	0.95	10.3	3.2
4	0.81	11.1	3.7
8	0.66	12.3	4.5
12	0.54	13.6	5.6
16	0.44	15.1	6.8
20	0.36	16.7	8.4
24	0.29	18.5	10.3
28	0.24	20.5	12.6

Eight reflections cost > \$1B

EST Plan

- By launching the telescope in segments and reuse in-space structural elements =>
- Many of the constraints on
 - -Mass,
 - -Deployment mechanisms
 - -Packaging
 - –are removed

New paradigm to break cost curve

- Partition the telescope into segments
- Launch segments separately
- In space assembly in stages
- Choose stages so each one is astronomically productive
- Today discuss
 - An architecture to do this
 - Optical design & issues
- MacEwen: infrastructure
- Lillie: on-orbit assembly & servicing

The Evolvable Space Telescope Vision

Phase 1 and 2 of EST 4-m class segments

Evolvable Space Telescope (EST)

- 1.Stage 1: First, build, launch, and conduct high value science with a fully functional three 4m segment telescope complete with instruments.
- 2.Stage 2: Some years later add a mirror, instrument, and service package to the in-space Stage 1 telescope to create an 8 – 12 meter aperture.
- 3.Stage 3: Some years after that add to the in-space
 Stage 2 telescope, more mirror segments, to make a 14
 20 meter aperture with new instruments and
 additional support systems.
- Science data is obtained continuously beginning with Stage 1 commissioning with only HST-like servicing gaps in the science return

UVOIR built using EST processes & technology

Phases to a 20-meter

- 1. 3 segments
- 2. 3 more segments
- 3. 12 more segments added at edge

Is Prime focus an advantage? . . .

Pointing stability is a big issue Prime focus may be more stable

The thermal induced piston error in a Cassegrain telescope Is twice (2x) that for a prime focus system

Concept for prime focus UVOIR imager

- Low polarization (no fold mirrors)
- High transmittance (few reflections)
- UV transmitting refractive correctors
- Wide field

Prime focus 6 x 12 m EST Metering structure Between vertex of the primary & the flange

Prime focus 6 x 12 m EST

Shows the UV imaging spectrometer correctors at prime focus

Ray-trace quick look at single reflection filled aperture

- 2 Corrector
 glasses: LiF & CaF₂
 @ f/2.15
- Wavelength range: 150-250 nm
- Spot diagrams over 7.8 arc sec
 FOV

5 micron pixels

Ray-trace quick look at single reflection filled aperture

- 2 Corrector
 glasses: LiF & CaF₂ ...
 @ f/2.098 at
 image plane
- Wavelength range: 0.00, 0.00, 0.000, 0
- Spot diagrams
 over 16.2 arc sec
 FOV

5 micron pixels; circle is diffraction limited

Lyot coronagraph system for prime focus EST

Breckinridge, Lam & Chipman (2015) Polarization aberrations in astronomical telescopes PASP **127**, 445 = > fold mirrors are bad for coronagraphs => EST gives potential to build a Lyot coronagraph with no fold mirrors – only powered optical elements 21

Prime focus advantages over Cassegrain

- Science applications
 - UV imaging spectroscopy (75 to 250 nm)
 - High contrast exoplanet coronagraphy ($C_T \approx 10^{-11}$)
 - Deep field imaging & spectroscopy astrophysics $(m_V \approx 35, \text{ for } 12\text{-m})$
- Prime focus design advantages
 - Low scattered light less complicated to baffle than Cassegrain
 - One metal/dielectric reflection to UV focal plane
 - One metal/dielectric reflection to a coronagraph mask
 - Thermally induced structural distortion: ½ Cassegrain
 - Two-reflections to an A/O in an imager
 - Minimum polarization aberrations
 - Fewer sources of polarization anisotropy

For next year

- Identify requirements & design solutions for
 - UV imaging [75 to 300 nm] spectroscopy
 - Terrestrial exoplanet coronagraphy
 - Deep field astrophysics [35th m_v; >4 arcmin]
 - Precision photo-polarimetry [0.01%]
- Optimize geometric & polarization aberrations
- Calculate the PSF across FOV
- SNR calculations

References

• Polidan, Breckinridge, Lillie, MacEwen, et. al.

An Evolvable Space Telescope for Future Astronomical

Missions: 2015 update. Proc. SPIE 9602-6

• Breckinridge, Lam and Chipman, Polarization

Aberrations in Astronomical Telescopes:

The Point Spread Function, (2015) PASP, 127:445–468

Scowan et. al. <u>Recommendations to the COPAG Executive</u>
 <u>Committee by the SIG #2</u>, (2016) in press

See me for .pdf's of these papers jbreckin@earthlink.net

Thank you

Why is polarization important?

- Hardware
 - Transmittance
 - Image Quality
- Exoplanet science
 - Atmospheric aerosols
 - Size of solid particles & dust envelopes
 - Orbital mechanics
- Astrophysics
 - High energy phenomena
 - Interstellar matter

Proof: polarization role in image formation

Image plane PSF

Resolution is position angle <u>in</u>dependent

No Polarizer

To represent internal polarization in the extreme we add two perpendicular linear polarizers

Exit pupil

Resolution is position angle <u>dependent</u>

The PSF is the incoherent sum of two "D" apertures

Observations

- Orthogonally polarized light does not interfere to to contribute to an image.
- The shape of the point spread function depends on how polarization changes across the exit pupil.

Questions?

- What are the sources of instrument polarization in astronomical telescopes?
- What is the magnitude of the effect?
- What is the impact?