

Case Study – Next generation ground based telescopes

- E-ELT Primary 906 segments each 1.45m wide
- TMT Primary 492 segments each 1.44m wide

- Significant manufacturing challenge
- Challenges conventional paradigms

Optics Manufacturing Requirements

Our Programs

W911NF-04-2-0001 – Army Research Laboratory

COTR: Dr. Jane Adams

- NNM06AA11C NASA Phase 2 SBIR – MSFC COTR: Mr. John West
- W9113M-07-C-0149 MDA Phase 2 SBIR – AFRL

COTR: Dr. Larry Matson

 NNX08CC82P – NASA Phase 1 SBIR – MSFC

COTR: Mr. William Jones

U.S. Government Contract

To look ahead, Look back

8/26/2008

NASA Mirror Tech days

The Chemistry of the Process

For SiO₂: SiO₂ + CF₄ \rightarrow SiF₄ + CO₂ For silicon: Si + CF₄ + O₂ \rightarrow SiF₄ + CO₂ For SiC:

- Damage-free figuring @ atmospheric pressure
- Gaussian footprint for chemical figuring tool
 - Arrhenius rate reaction

Torch Technology Roadmap

Figuring capability as a function of spatial frequency

- Gaussian does not introduce ringing but is limited in ability to figure higher spatial frequencies
- Roadmap to changing spot size on the fly to permit MRR vs. figuring capability tradeoff

8/26/2008

NASA Mirror Tech days

RAP IMP – Application to SiC

- High activation energy for SiC thermal management during figuring critical
- Considerable knowhow to minimize edge-effects
- Polycrystalline/multi-phase materials roughen up, iteration between figuring and buffing needed to obtain desired figure/roughness
- 150th wave RMS figure and 3 Angstroms RMS roughness achieved repeatably

RAP Assisted Manufacturing

- Material Removal Rate
- SSD removal/figuring
- Determinism
 - Repeatability
 - Uniformity of neutral removal
 - Figuring capability (f(ω_s))
- Roughness Evolution
 - Grain boundaries
 - Sub-surface damage sites
 - Inclusions and inhomogeneity
- Manufacturing economy

Fused Silica (3 um removal)

RAP Figuring

Roughness Measurements – NewView @ 20X

Pre-RAP

B Zygo

PV

rms Ra

Size X

Size Y

13.786

14.488

11.611

0.57

0.43 mm

nm

Å

8

mm

Removed

Trimmed

		co	NFIGURATIONS		
	Configuration Ma	nagement		1	
	LastCorfig	<u>ــــــــــــــــــــــــــــــــــــ</u>	Forester Config Fore	Config File	
Paths			TPA Processing		
Configuration Directory	c tpaconfigs)	Browse	Output Grid Spacing (mm)	1	
Metrology Data Source	c 17FA bleh oCatal	Browse	Max Valocity (mm/sec)	200	
Tool File Directory	C (TPA/Zoohs)	Browse			
Output File Directory	c (IPA/Output)	Drowse	Min Velocity (mm/sec)	10	
			Max Acceleration (g)	1	
			Maximum Convolution Time (sec)	60	
Metrology Data Configuration			Tool Runoff Margon (mm)	15	
Source Data Type	Zygo GPI	-			
Data File Extension	TAD		Off-Part Velocity (mm/sec)	500	
Input Data Units	Microns		Motion Platform	Aerotech	
Auto Tilt Removal	or				
Display Data Units	Micros	Dec Pl 3			

- Decouple path planning from dwell algorithm
- Dwell algorithm accepts
 - Error map
 - Footprint
 - PER
- Outputs
 - ROC
 - Dwell map
- Path planning based on machine configuration/options

NASA SBIR Phase II ~100% Clear Aperture

- 6" Clear Aperture
- Light-weighted SiC primary
- f/4 Parabola
 - Pathfinder to a 12" CA, f/2
 Parabola
 - Meter class segmented mirror pathfinder

8/26/2008

Motion platform

8/26/2008

NASA Mirror Tech days

MDA Phase II: 5-Axis Upgrade, 300mm RAP Tool

- 2 Axis Tip Tilt Torch Stage
 - Built on 300 mm Proto 1 Platform
 - Increased Z Stroke: 100mm travel
 - Working Travel: +/- 30 degrees
 - Max Angular Velocity: 44 deg/sec
 - Integrated IR Heater Assembly
 - Additional Electrical Enclosure required for 2X servo amplifiers
 - Lightweight Torch and Matching — Network

Dbl. Click to Play Movie Clip

MDA Phase II: Primary Mirror Substrate

- Off-axis ellipse
- f/0.76
- Poco Graphite Material

8/26/2008

NASA ConX [IXO] – SBIR Phase I

- "Fabricate & Assemble" approach
- Slumped glass mirrors with glass spacers (wedges)
 - Curvature
 - Thickness taper in optical axis
 - Radial thickness
- Phase 1 demonstrator
 - 10 μm wedges on 1mm thick,
 100mm square flats
 - Borosilicate glass
 - Metrology challenge (warp)
 - NewView slices (subtractive maps)

PT

NASA ConX [IXO] – SBIR Phase I

- Met program objectives
- Rapid manufacturing of wedges is possible
- Extend to curved surfaces
- Metrology challenges

Helios range of tools

- Astronomy applications
- Helios 1200 is the first offering
 - Cranfield University is our first customer
 - Machine commissioned at Cranfield University
- Configurable in various platforms per user specification
- Simplified CNC motion control
 - G codes
 - PVT specifications

Machine Pictures

RAPT INDUSTRIES

33.07 0.00

- Patterning ULE posts
- $10 \,\mu\text{m}$ tall
- Range of diameters •
 - $-450 \,\mu m$ to 850 μm

Patterning Capability

4.00

Profi

Ra

Distance (mm)

μm

μm

Reset

Set

Level

Prof

Tra

AxesCt

PV

rms

0.00

10.810

3.608

500mm Tool – EOS Series

- Standard offering
 - 5 axis tool
- 500mm clear aperture
- Tip tilt to handle upto f/0.3 surfaces
- Available for sale in Dec. 2008
- Torch design allows easy integration onto other motion control platforms
- Roadmap to smaller footprints

Conclusions

- Rapid manufacturing using a combination of conventional and non-conventional steps
- Utilize RAP for damage-free shaping, damage removal, and/or final figuring where appropriate
- Non-contact, Atmospheric pressure operation
- Rapid optics fabrication leads to
 - big reductions in schedule risk
 - quicker prototyping/design cycles
 - lower overall program cost/performance risk
- Scaling
 - Larger clear apertures
 - Smaller features (on the fly)

Questions?